
Cognition Rehearsed
Recognition and Reproduction of

Demonstrated Behavior

Erik A. Billing

PHD THESIS, JANUARY 2012
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

billing@cs.umu.se
www.cs.umu.se/personal/erik-billing

Copyright c© 2011 by authors
Except Paper I, c© 2010 INSTICC Press

Paper II, c© 2008 IEEE
Paper III, c© 2010 Springer Verlag
Paper IV, c© 2011 Springer Verlag
Paper V, c© 2010 IEEE

ISBN 978-91-7459-349-5
ISSN 0348-0542
UMINF 11.16
December 21, 2011

Front cover by Johan Billing, Mena Abd Mohammed, and Pär Andersson.
Printed by Print & Media, Umeå University, 2011.

Abstract

The work presented in this dissertation investigates techniques for robot Learning from
Demonstration (LFD). LFD is a well established approach where the robot is to learn
from a set of demonstrations. The dissertation focuses on LFD where a human teacher
demonstrates a behavior by controlling the robot via teleoperation. After demonstra-
tion, the robot should be able to reproduce the demonstrated behavior under varying
conditions. In particular, the dissertation investigates techniques where previous be-
havioral knowledge is used as bias for generalization of demonstrations.

The primary contribution of this work is the development and evaluation of a semi-
reactive approach to LFD called Predictive Sequence Learning (PSL). PSL has many
interesting properties applied as a learning algorithm for robots. Few assumptions
are introduced and little task-specific configuration is needed. PSL can be seen as a
variable-order Markov model that progressively builds up the ability to predict or sim-
ulate future sensory-motor events, given a history of past events. The knowledge base
generated during learning can be used to control the robot, such that the demonstrated
behavior is reproduced. The same knowledge base can also be used to recognize an
on-going behavior by comparing predicted sensor states with actual observations. Be-
havior recognition is an important part of LFD, both as a way to communicate with
the human user and as a technique that allows the robot to use previous knowledge as
parts of new, more complex, controllers.

In addition to the work on PSL, this dissertation provides a broad discussion on
representation, recognition, and learning of robot behavior. LFD-related concepts
such as demonstration, repetition, goal, and behavior are defined and analyzed, with
focus on how bias is introduced by the use of behavior primitives. This analysis results
in a formalism where LFD is described as transitions between information spaces.
Assuming that the behavior recognition problem is partly solved, ways to deal with
remaining ambiguities in the interpretation of a demonstration are proposed.

The evaluation of PSL shows that the algorithm can efficiently learn and reproduce
simple behaviors. The algorithm is able to generalize to previously unseen situations
while maintaining the reactive properties of the system. As the complexity of the
demonstrated behavior increases, knowledge of one part of the behavior sometimes
interferes with knowledge of another parts. As a result, different situations with simi-
lar sensory-motor interactions are sometimes confused and the robot fails to reproduce
the behavior.

One way to handle these issues is to introduce a context layer that can support
PSL by providing bias for predictions. Parts of the knowledge base that appear to fit

iii

Abstract

the present context are highlighted, while other parts are inhibited. Which context
should be active is continually re-evaluated using behavior recognition. This tech-
nique takes inspiration from several neurocomputational models that describe parts of
the human brain as a hierarchical prediction system. With behavior recognition active,
continually selecting the most suitable context for the present situation, the problem
of knowledge interference is significantly reduced and the robot can successfully re-
produce also more complex behaviors.

iv

Sammanfattning

Den här avhandlingen presenterar en undersökning av metoder för robotinlärning från
demonstrationer (LFD). LFD är en väl etablerad teknik för att lära robotar nya be-
teenden. Avhandlingen fokuserar på LFD där en mänsklig lärare fjärrstyr roboten
medan motorkommandon och sensoravläsningar spelas in. Efter demonstrationen ska
roboten kunna reproducera beteendet under varierande förhållanden. Möjligheten att
använda tidigare motorisk kunskap för att tolka demonstrationen undersöks. Denna
information kan underlätta generalisering av demonstrationen, så att beteendet kan
reproduceras även när förhållandena i omgivningen förändrats.

Det huvudsakliga vetenskapliga bidraget i den här avhandlingen är en semireak-
tiv algoritm för LFD benämnd Predictive Sequence Learning (PSL), samt en serie
utvärderingar av denna. PSL har flera intressanta egenskaper när den appliceras som
metod för LFD. PSL kräver endast begränsad anpassning till nya applikationer och
få antaganden introduceras. Algoritmen kan ses som en Markovmodell som anpassar
tillståndsrymden efter det data som den tränas på. Genom träning genereras en mod-
ell som kan användas för att predicera eller simulera sensor- och motortillstånd som
spelats in vid demonstrationer. Modellen kan användas för att kontrollera roboten så
att det demonstrerade beteendet reproduceras. Modellen kan också användas för att
känna igen ett pågående beteende. Detta görs genom att predicerade sensortillstånd
jämförs med observerade. Denna förmåga att känna igen beteenden är viktig för LFD,
både som ett sätt att kommunicera med användaren men också som en teknik som
möjliggör användandet av tidigare kunskap för att tolka demonstrationer.

Utöver arbetet med PSL presenteras en diskussion om representation, igenkänning
och inlärning av robotars beteende. LFD-relaterade koncept som demonstration, rep-
etition, mål och beteende definieras och analyseras, med fokus på hur förkunskap kan
introduceras genom beteendeprimitiv. Analysen resulterar i en formalism där LFD
beskrivs i termer av övergångar mellan informationsrymder. Flera sätt att hantera
tvetydigheter i tolkningen av demonstrationer föreslås.

Utvärderingen av PSL visar att algoritmen är användbar som en reglermetod för
robotar. PSL kan på ett effektivt sätt representera och reproducera enklare beteenden,
samt generalisera till nya situationer. För mer komplexa beteenden ökar dock risken att
delar av den genererade modellen stör andra delar, och det inlärda beteendet kan inte
reproduceras på ett korrekt sätt. Ett sätt att hantera detta problem är att introducera ett
kontextlager. Kontextlagret kan stödja PSL genom att aktivera de delar av modellen
som hör till den aktuella kontexten, medan övriga delar inhiberas. Den prediktiva
modellen kan användas för att beräkna hur den aktuella situationen är förenlig med

v

Sammanfattning

olika kontexter. Roboten kan på så vis automatiskt aktivera den kontext som bäst pas-
sar den aktuella situationen. Denna metod är inspirerad av flera beräkningsmässiga
modeller av nervsystemet vilka beskriver hjärnan som ett hierarkiskt prediktionssys-
tem. När kontextlagret används minskar risken att delar av modellen stör andra delar,
och roboten kan framgångsrikt reproducera mer komplexa beteenden.

vi

Preface

This thesis consists of an introduction, an overview of relevant research, and the fol-
lowing seven articles.

Paper I Erik A. Billing. Cognitive Perspectives on Robot Behavior. In Proceed-
ings of the Second International Conference on Agents and Artificial In-
telligence, Special Session on Languages with Multi-Agent Systems and
Bio-Inspired Devices, p. 373–382. INSTICC Press. Valencia, Spain, Jan-
uary 22–24, 2010.

Paper II Erik A. Billing and Thomas Hellström. Behavior Recognition for Seg-
mentation of Demonstrated Tasks. In Vladimı́r Mařı́k, Jeffery M. Brad-
shaw, Joachim Meyer, William A. Gruver, and Petr Benda (Eds.), Pro-
ceedings of IEEE SMC International Conference on Distributed Human-
Machine Systems, p 228–234. IEEE. Athens, Greece. March 9–12, 2008.

Paper III Erik A. Billing and Thomas Hellström. A Formalism for Learning from
Demonstration. Paladyn: Journal of Behavioral Robotics. 1:1, p. 1–13.
Versita, co-published with Springer Verlag. March 2010.

Paper IV Erik A. Billing, Thomas Hellström, and Lars-Erik Janlert. Predictive
learning from demonstration. In Joaquim Filipe, Ana Fred, and Bernadette
Sharp (Eds.), Agents and artificial Intelligence: Revised Selected Papers,
p. 186–200. Springer Verlag. Communications in Computer and Infor-
mation Science, 129. 2011.

Paper V Erik A. Billing, Thomas Hellström, and Lars-Erik Janlert. Behavior Recog-
nition for Learning from Demonstration. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation, p. 866–872. IEEE.
Anchorage, Alaska, May 3–8, 2010.

Paper VI Erik A. Billing, Thomas Hellström, and Lars-Erik Janlert. Robot Learning
from Demonstration using Predictive Sequence Learning. To appear in A.
Dutta (Ed.), Robotic Systems - Applications, Control and Programming.
InTech. 2011.

Paper VII Erik A. Billing, Thomas Hellström, and Lars-Erik Janlert. Simultaneous
Control and Recognition of Demonstrated Behavior. Technical Report,
UMINF 11.15. Department of Computing Science. Umeå University.
Sweden. 2011.

vii

Preface

Additional work

Minor additional contributions can be found in the following papers by the author.

1. Erik A. Billing. Simulation of Corticospinal Interaction for Motor Control.
Master Thesis. Cognitive Science Programme, Department of Integrative Med-
ical Biology, Umeå University, Umeå, Sweden. 2004.

2. Erik A. Billing and Thomas Hellström. Behavior and Task Learning from
Demonstration. In Proceedings of the 23rd Annual workshop of the Swedish
Artificial Intelligence Society (SAIS06), p. 151. Umeå, Sweden. May 10-12,
2006.

3. Erik A. Billing. Representing Behavior - Distributed theories in a context of
robotics. Technical Report, UMINF 07.25. Department of Computing Science.
Umeå University. Sweden. 2007.

4. Erik A. Billing. Cognition Reversed - Robot Learning from Demonstration. Li-
centiate Thesis. Department of Computing Science. Umeå University. Sweden.
2009.

5. Erik A. Billing, Thomas Hellström, and Lars-Erik Janlert. Model-free Learning
from Demonstration. In Proceedings of the Second International Conference on
Agents and Artificial Intelligence, p. 62-71. INSTICC Press. Valencia, Spain,
January 22–24, 2010.

6. Erik A. Billing. Achilles’ heel of cognitive science. Technical Report, UMINF
11.14. Department of Computing Science. Umeå University. Sweden. 2011.

viii

Path to dissertation

When I started my PhD studies in 2006 I was convinced that robots able to act and
learn like humans do were science fiction and not a realistic research topic. I had taken
what I saw as a mature perspective on artificial intelligence, aligning to a weak AI per-
spective. During my undergraduate studies at the Cognitive Science Program1, I was
taught that cognition is about how humans, animals and artificial systems perceive
information, process it and finally respond with some output or action. Since I had
not even seen computers able to solve the perception problem in any way comparable
to humans’ and animals’ perceptual abilities, I could not see how we could even ap-
proach the problems of implementing human-like information processing and action
abilities in robots. Of course there were many specific applications were robots were
successful, but my interest lay, and still lies, in a general understanding of cognition.
In this context, robot learning appeared as one area where general solutions where still
in focus.

I directed my attention to robot Learning From Demonstration (LFD), where the
robot is to learn from a set of examples or demonstrations. I focused on scenarios
where a human teacher is controlling the robot pupil via teleoperation. In this context,
a demonstration is a sequence of sensor readings and motor commands issued by the
teacher during execution of the desired behavior. While this kind of scenario may not
resemble the way humans teach each other, they constitute practically useful settings
generalizable to many kinds of robots.

I was initially interested in how behavior should be represented in robots. When
reviewing the literature on intelligent robotics and robot learning, leading up to Paper
I, I had problems to find a clear consensus on what methods to use. Many of the
proposed methods appeared to fit the particular application well, but it was difficult
to get an understanding of which methods that would work best in the general case.
Together with my supervisor Thomas Hellström2, I decided to direct my attention to
approaches that used so called behavior primitives or skills as a method for LFD. A
behavior primitive is a simple controller that can be combined with other controllers
to form more complicated behaviors. Without specifying how each primitive was to
be implemented, we could still reason about how they could be combined. If we could
create a system able to combine primitives on several levels, such that combined skills
could constitute primitives for even more complex behaviors, a hierarchical structure
would emerge able to gradually increase the robot’s knowledge.

1 Cognitive Science Program, Department of Psychology, Umeå University, Umeå, Sweden
2 Assoc. Prof. Thomas Hellström, Department of Computing Science, Umeå University, Umeå, Sweden

ix

Path to dissertation

We realized the importance of behavior recognition, i.e., that the robot must be
able to recognize some part of a demonstration corresponding to a known behavior
primitive. We developed and evaluated three techniques for behavior recognition,
presented in Paper II. During this work we realized that behavior recognition was a
very hard problem. Even simple demonstrations could be manifestations of a great
variety of different behaviors. Small changes in the environment or the controller
could result in a completely different sequence of sensory-motor events constituting
the demonstration. Me and Thomas Hellström put a lot of work into analyzing and
formalizing these issues, resulting in Paper III.

The conclusion was that some assumptions (biases) had to be introduced to make
learning possible. Even though this was an obvious conclusion for anyone with some
experience in machine learning, I couldn’t help but finding it really annoying. If we
have to introduce information about the behavior prior to learning, then what good
does learning do? One could of course argue that we must rely on some very basic
assumptions, applicable in many situations and behaviors, but this wasn’t how it was
done in practice. The kind of assumptions that we, and many other researchers in
the field, introduced were specific things, like what aspects of objects were relevant,
how positions of the robot and objects in the environment should be represented, and
with which granularity the sensors could perceive the world. All these assumptions
are typical examples of ontological information that is necessary for any knowledge
representation. It seemed to me that what we did was building more and more in-
formation into the robot until the interpretation became obvious. This was in direct
conflict with the kind of incremental learning that we aimed for when using behavior
primitives.

In the middle of all this, a colleague, Daniel Sjölie3, directed me to a book called
On Intelligence by Jeff Hawkins. For me, this book became the first step into a field of
research investigating high level computational aspects of the brain. I had been work-
ing with computational neuroscience for my Master Thesis4, and was happy to find
a book that actually put knowledge from both neuroscience and computing science
together. About the same time, Ben Edin5, supervisor for my Master Thesis, directed
me to the work by Brandon Rohrer at Sandia National Laboratories. Both the work by
Rohrer and Hawkins focus less on where in the brain it happens, and more on how it
happens. Two things in Hawkins’s book really caught my attention.

1. Cortex is primarily a memory system

2. The whole cortex performs one and the same basic computation, referred to as
the common cortical algorithm (CCA)

If the idea about CCA is right, it should be possible to formulate it in computational
terms and implement it in a computer, allowing robots to learn like humans and other
animals do. While the brain does not work like a computer and a computer may not

3 Daniel Sjölie, Department of Computing Science, Umeå University, Umeå, Sweden
4 Erik A. Billing. Simulation of Corticospinal Interaction for Motor Control. Master thesis. Department

of Integrative Medical Biology, Umeå University, Sweden
5 Prof. Ben Edin, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden

x

Path to dissertation

be an efficient platform for implementing the kind of computations performed by the
brain, the brain does learn without a programmer telling it what is important and I got
convinced that the best way to figure out how to do the same in robots is to understand
how the brain works.

During autumn 2008 and spring 2009 I studied several models of the brain which
resulted in an overview constituting large parts of the introduction chapters to my
Licentiate thesis6. Inspired by Rohrer’s work on modeling motor control, we also de-
veloped the algorithm Predictive Sequence Learning (PSL) which forms the basis for
papers IV to VII of this dissertation. PSL is a dynamical temporal difference algorithm
that introduces very few assumptions into learning. In the work presented in Paper IV,
PSL was applied to an LFD-problem, learning to control a Khepera miniature robot.
Based on PSL, we also developed two algorithms for behavior recognition. The new
algorithms were compared with our previous work on behavior recognition. The re-
sults are presented in Paper V. The work with Paper IV and Paper V showed that PSL
could be used both as a controller and as a method for behavior recognition, but also
revealed a number of problems and limitations with the algorithm.

In December 2009, I presented my Licentiate thesis and during the spring that
followed we explored several ways to continue the work on PSL. In order to allow
larger knowledge bases, I spent some time on implementing a version of PSL that
could store the knowledge base in a standard relational database. This implementation
did however prove to be too slow to be useful for robotic applications. Almost half
a year was spent on applying PSL to a reinforcement learning task. The idea was to
use the growing knowledge base of PSL as basis for generalizing rewards, potentially
creating a system that dynamically constructed a state space suitable for the particular
task. This proved to be much more difficult than expected and also directed me away
from LFD, that was the main focus of my dissertation. We therefore decided to cancel
this direction and unfortunately I’ve not found the time to pick it up within the time of
my PhD studies.

We also put work into a new version of PSL based on Fuzzy Logic (presented in
papers IV and VII). The new version handles data with many dimensions in a better
way than the original algorithm, which made it possible to scale up the evaluation
environment from the Khepera robot to a human size Kompai robot. While all results
presented in papers VI and VII are taken from the simulated environment, experiments
on the physical robot were made parallel to this work. We were however not able to
finish the experiments on the physical robot in time for this dissertation.

Inspired by the neurocomputational models reviewed in my Licentiate thesis, we
also explored the possibility to create a hierarchical system based on the original PSL
algorithm. While a complete implementation of such an architecture has not been done
within the timespan of this dissertation, several components have been implemented
and evaluated. In Paper VII, a context layer for PSL is introduced. The behavior
recognition abilities of PSL is used to continuously select the most suitable context
while the robot is driving. The context layer provides bias to PSL by activating some
parts of the knowledge base, while inhibiting other parts. The architecture presented

6 Erik A. Billing. Cognition Reversed - Robot Learning from Demonstration. Licentiate Thesis. Depart-
ment of Computing Science. Umeå University. Umeå. Sweden. 2009.

xi

Path to dissertation

in Paper VII could potentially be extended with a second instance of PSL running
at the context level, further supporting selection of suitable contexts. Such a two-
layer architecture could be further extended with more layers, producing a dynamic
hierarchical system making predictions at multiple levels of abstraction (see Chapter
3 for details).

The results presented in Paper VII are promising and I am now finishing this dis-
sertation with a feeling that I want to do so much more. I want to fully explore the
possibilities of the kind of learning architecture that this dissertation embraces. In a
couple of years, if I look back on this thesis, the text will probably appear different to
me. My brain may have rehearsed the arguments yet a number of times, hierarchical
learning systems may not appear as thrilling as they do now, and I will hopefully see
their limitations much clearer. I may use different knowledge to interpret these words,
and they may mean different things to me, than they do now. If that is so, I will be
happy.

xii

Acknowledgements

Wednesday, June first 2005, I made a mistake. I wrote and failed the exam on the
course Intelligent Robotics at the Department of Computing Science, Umeå Univer-
sity. I had not studied enough, obviously. Even though I found the subject very inter-
esting, I could not see how it would ever contribute to my future career. The failure
was a close cut, and the course responsible Thomas Hellström gave me the opportu-
nity to do a project work rather than taking the re-exam. The project went well, and
when I was finished, Hellström asked me if I would like to become PhD student. And
I did.

With all my heart, I now, more than six years later, express my great gratitude to
my supervisor Assoc. Prof. Thomas Hellström for believing in me and giving me
this opportunity to become a PhD. Thank you for all the long discussions, our many
arguments, and for being there when I needed you.

Even though Hellström was the one who pulled me into PhD studies and was most
present in my work for the first years, my secondary supervisor Prof. Lars Erik Janlert
has also been an invaluable mentor during my PhD studies. Thank you for providing
guidance and detailed comments on my work. Thank you for many interesting discus-
sions, especially during the last part of my PhD studies. But most of all, thank you for
always trusting in me and providing a sense of calm when needed. And thank you for
pulling me into Swecog.

The National Graduate School of Cognitive Science (Swecog) has been a very im-
portant platform for me. I would like to thank Christian Balkenius, Nils Dahlbäck,
and the other members of Swecog, for providing a very inspiring community for dis-
cussion and reflection which have helped me enforce the cognitive direction of my
research. I also acknowledge Brandon Rohrer for valuable input to this work.

I thank Ola Ringdahl and Johan Tordsson who all since I came to the department
have been close colleagues, helping me out with all these small, daily things that are
so important. I would also like to thank Daniel Sjölie who provided some of the most
valuable directions for the work presented in this thesis, and Benjamin Fonooni who
made important work on the software platform used for papers VI and VII. Thanks
also go to Stefan Holmgren, Lennart Edblom, and Lena Kalin Westin for giving me
the opportunity to teach as much as I have during these years. It has been hard at
times, but very rewarding. I also express my gratitude to all other colleagues at the
department for providing a warm environment which makes it easy to go to work in
the morning. Special thanks goes to Tommy Eriksson, Roland Johansson, Yvonne
Löwstedt, Anne-Lie Persson, Inger Sandgren, and the department’s support group, for

xiii

Acknowledgements

always keeping a positive attitude and helping out with all the practical things.
Finally, thanks goes to my dear Mena, my friends, my parents, and my brother.

Thank you for dragging me out of the office, and for letting me stay at times. Thank
you for helping me forget work when I need to, and for reminding me that there
are other things than robots worth exploring. Without you, this dissertation would
probably be more comprehensive, but I would not be wiser.

xiv

Contents

1 Introduction 1

2 Learning from demonstration 5
2.1 Level of imitation 6
2.2 Control 7
2.3 Recognition 9

3 Hierarchical models for learning 13
3.1 Motivation for hierarchies 14
3.2 Hierarchical predictive learning 16

4 Summary of articles 21

5 Contributions 23

Paper I 33

Paper II 47

Paper III 59

Paper IV 77

Paper V 97

Paper VI 109

Paper VII 129

xv

xvi

Introduction

CHAPTER 1

Introduction

Robots are more present in our society than ever before. The first autonomous cars are
now driving on public streets (Taylor III, 2011), the first humanoid robots are helping
customers in shopping malls (Pal Robotics, 2011) and robots are becoming increas-
ingly important for industry (Bischoff & Guhl, 2009). It is challenging to develop
robots for several reasons. Robots are often aimed for applications that require high
precision, handling of heavy loads, and are typically expected to execute tasks faster
and more reliably than humans. Most tasks require that actions are executed in rela-
tion to the environment, in a safe way. Furthermore, the robot is expected to act on its
own, without being directly controlled by a human user. To accomplish this, the robot
is given sensors, actuators, and a computational unit. A computer program, referred
to as a controller, reads and processes information from the sensors and controls the
robot by sending signals to the actuators. The work presented in this dissertation is
concerned with how to design controllers for robots acting in an everyday changing
environment.

A controller π is defined as a mapping from a state x ∈ X to an action u ∈U :

π : X →U (1.1)

The state space X comprises all information necessary to select an action from the
action space U . What information that is necessary depends on the particular behavior,
but also on the robot’s physical properties and its set of sensors and actuators. The
current state xt is defined by the use of information from sensors, mapping physical
measures to a sensor state yt ∈ Y , at time t.

Robots for special purposes, like lawn mowers and vacuum cleaners, are becoming
common products. More flexible, multi-purpose, robots are however still far from the
market. Robots could potentially be of great support in our daily lives; at work, and in
our homes. Supporting us when we grow old, or serving as fun and interesting toys to
play with as kids. Research on robots is also one way to better understand ourselves.
Robots can be used as models of humans and other animals, supporting research on
how we perceive information and control our actions (Berthouze & Metta, 2005).

One of the things that still prevent robots from entering everyday environments,
like homes and office areas, are robots’ limited ability to adapt to the environment.
In an engineered environment, like a factory floor, the robot can be perfectly tuned to
the application at design time, or through an iterative process where the robot is tested

1

Cognition Rehearsed - Chapter 1

and modified by the developers. However, in most other environments, the developers
do not have complete information about the environment in which the robot is going
to be used. For example, a robot that is to support a person by fetching things in
that person’s home, must know where he or she usually places things. This kind of
information can only to limited extent be introduced at design time and the robot
must therefore be able to store and use information gained from interaction with the
environment in order to change π . We say that the robot must be able to learn.

Robot learning is not only about adapting an existing controller to a particular
environment, but also about creating new behavior. The user may for example want
his robot to also place things back at the right place in the apartment. In this case,
the human user must be able to describe the desired behavior for the robot. There
are at least two major approaches to robot learning. The robot can try out new things
by itself, while the human gives feedback in terms of reward and punishment. This
kind of learning is called Reinforcement Learning (RL). Alternatively, the teacher may
demonstrate the desired behavior to the robot. This kind of learning is called Learning
from Demonstration (LFD) and is the primary focus of the work presented in this
dissertation. The research problem of LFD can be formulated as how to represent
information gained from demonstrations in such a way that the robot can reproduce
the demonstrated behavior under varying conditions.

The term behavior is used to denote an agent’s actions in relation to the environ-
ment and the term demonstration is used to refer to the information gained from the
teacher showing how to execute a particular behavior. The teacher often has to demon-
strate a behavior several times in order to allow the robot to generalize the behavior to
new situations. The question of how a set of demonstrations should be generalized is
central in LFD and is the main research question investigated in this dissertation.

In order to generalize demonstrations, bias is needed. That is, some basis on
which the robot can choose one generalization over another. This very general claim,
illustrated by the “no free lunch” theorems (Wolpert & Macready, 1997), applies not
only to LFD, but to any learning or optimization system. In the context of robot
learning, the “no free lunch” can be interpreted as an argument that it is not possible
to create a general learning system that is always better than another. This can be seen
as a good argument for conducting research on LFD only in limited domains, where
domain specific knowledge can be introduced into the system. The work presented
here focuses however on general approaches to LFD. The main thesis of this work is
that such a general approach to learning is both possible and desirable, with the goal
of showing why, and how, general learning can be achieved.

The techniques for LFD proposed in this dissertation use previous knowledge,
gained from earlier learning sessions, as bias in future learning. Such an approach
changes the generalization biases as learning progresses and allows the robot to pro-
gressively learn more complex behaviors. This ability to learn by the use of existing
skills, possessed by humans and many animals, is illustrated by the zone of proximal
development. This notion was introduced by Vygotsky (1978) in an argument against
the use of standardized tests as a measure of students’ intelligence. Vygotsky argues
that a better gauge of intelligence is obtained by contrasting the results of students
solving problems with, and without, guidance from others. The basic idea is that

2

Introduction

learning can only take place when the task is not too easy and not too hard, but within
the zone of proximal development. Taking a pupil through the zone of proximal de-
velopment is called scaffolding, a term that has also become popular in robot learning
(Berk & Winsler, 1995; Otero et al., 2008). In a scaffolded learning process, the pupil
takes active part by exploiting new solutions based on known skills, while the teacher
is supporting, scaffolding, the learning environment such that the pupil is able to com-
plete the task. As learning progresses, teacher support is gradually reduced until the
pupil can complete the task by itself.

The idea of using the result from previous learning sessions as basis for future
learning is also present within the machine learning community, for example in form
of learning to learn (e.g. Thrun & Pratt, 1998). These techniques aim to represent
knowledge gained from learning such that it increases the performance of future learn-
ing. In the field of LFD, one common approach that implements this idea is the use of
so called behavior primitives or skills (Fod et al., 2002; Matarić, 2002; Nakaoka et al.,
2003; Nicolescu, 2003; Peters II et al., 2003; Bentivegna, 2004; Koenig & Matarić,
2006). A behavior primitive is a pre-programmed or previously learned controller that
can execute a behavior, or some part of a behavior. A demonstration is matched with
known primitives, transforming LFD into the problem of selecting a set of primitive
controllers that can produce the demonstrated behavior. This process can be divided
into three activities:

1. Behavior segmentation where a demonstration is divided into smaller seg-
ments.

2. Behavior recognition where each segment is associated with a primitive con-
troller.

3. Behavior coordination, referring to identification of rules or switching condi-
tions for how the primitives are to be combined.

These three activities were identified during the work on Paper III and remain cen-
tral through most of the work presented in this dissertation. Specifically, the problem
of behavior recognition is studied in detail. Behavior recognition can be seen as a
classification problem of sequential data and is, just like the original generalization
problem, in need of bias. While many solutions exist for specific controllers, a system
able to recognize learned behaviors needs a generic solution to the problem of behav-
ior recognition. One approach that may provide a general solution is to use a forward
model (predictor) in combination with the inverse model (controller). The last four
papers included in this dissertation comprise an investigation of one method along
these lines. We call the proposed algorithm Predictive Sequence Learning (PSL).

An introduction to LFD is given in Chapter 2. Chapter 3 introduces hierarchical
models for LFD. A summary of the seven papers included in this dissertation is found
in Chapter 4 and primary contributions of presented work are summarized in Chapter
5.

3

Cognition Rehearsed - Chapter 1

4

Learning from demonstration

CHAPTER 2

Learning from demonstration

Successful Learning from Demonstration (LFD) requires that, given a set of demon-
strations, a controller is generated such that the robot can reproduce the demonstrated
behavior under varying conditions. This generalization process is difficult to formal-
ize since it is often far from obvious how a particular set of demonstrations should be
generalized. The relevance of different features in the demonstrations depend on how
the behavior is demonstrated, what the purpose of the behavior is, and what sensors
and actuators the robot has. It is therefore difficult to provide a precise formulation of
how to generalize a demonstration, or a set of demonstrations. The notion of behavior
is often used in a very general sense to describe some action in response to stimuli (e.g.
Arkin, 1998) where it is basically up to the human teacher to freely decide whether a
certain robot behavior is successful or not.

One way to structure the research field of LFD was made by the formulation of
four questions of imitation learning: what-to-imitate, how-to-imitate, who-to-imitate,
and when-to-imitate (Alissandrakis et al., 2002). The first question, what-to-imitate,
was originally introduced in a classical work by Nehaniv & Dautenhahn (1999):

An action or sequence of actions is a successful component of imita-
tion of a particular action if it achieves the same subgoal as that action.
An entire sequence of actions is successful if it successively achieves each
of a sequence of abstracted subgoals.

In other words, successful LFD requires that the goal of the demonstrated behavior
be identified. In robotics, the formulation of a goal is often not trivial since it relies
on background knowledge. Even if the goal state itself may be easily identified, for
example a particular location in the environment, we usually demand that the robot
be able to reach that location in a particular way. We may implicitly introduce the
requirement that the robot be able to reach the target location within a certain time,
and without hitting walls or objects on the way. It appears that there is no obvious
limit to the amount of background knowledge required and it is therefore difficult to
directly use a human’s description of a goal as basis for the robot’s behavior.

The second question, how-to-imitate, captures the problem of reproducing the be-
havior. Even if a suitable level of imitation is selected and the goal is identified, it
is often not trivial to generate a controller that fulfills the goal. This problem is crit-
ical when the pupil has a different body structure. In this case, the teacher’s actions

5

Cognition Rehearsed - Chapter 2

have to be transformed to corresponding actions for the robot pupil, introducing the
correspondence problem (Nehaniv & Dautenhahn, 1999).

Who and when to imitate are the questions of selecting another agent that would be
valuable to imitate and selecting the right time for imitation, respectively. Humans and
animals do not just go around and imitate others all the time, but are able to identify
parts of another agent’s behavior that are valuable to copy. Parts of these problems
are to identify a beginning and an end of demonstrations. Another related problem
is to temporally align demonstrations such that common features can be identified
even when the length of demonstrations varies. One common technique for temporal
alignment is dynamic time warping (Myers & Rabiner, 1981), for example applied to
kinesthetic demonstrations of a chess-piece moving task (Calinon et al., 2007).

Behaviors can be demonstrated to a robot in many different ways. Argall et al.
(2009) outline four types of demonstrations: A direct recording of motor commands
and sensor readings is referred to as an identity record mapping. In this case, the robot
is controlled via tele-operation or by physically moving the robot’s limbs (kinesthetic
teaching). An external observation, e.g. a video recording of the teacher, is called
a non-identity record mapping. This type of demonstrations poses a difficult sensing
problem of detecting how the teacher has moved, but also allows much more flexible
demonstration settings. The teacher may have a body identical to that of the pupil
(identity embodiment) or a body with a different structure (non-identity embodiment).
The latter case introduces the correspondence problem mentioned above. The work
presented in this dissertation focuses on LFD via tele-operation. Sensor data and mo-
tor commands are recorded while a human teacher demonstrates the desired behavior
by tele-operating the robot, producing demonstrations with identity in both record
mapping and embodiment. In papers II to V, a miniature Khepera robot (K-Team,
2007) is used. The robot is controlled using a keyboard while motor commands and
sensor readings are recorded. In papers VI and VII, a human size Kompai robot (Ro-
bosoft, 2011) in a simulated apartment environment is used. This robot is controlled
using a joypad while motor commands and sensor readings are recorded in a similar
way as with the previous work.

2.1 Level of imitation

One part of solving the what-to-imitate question is to identify suitable levels of ab-
straction at which the behavior is imitated. Stressing the hierarchical structure of
behavior, Byrne & Russon (1998) identifies two distinct levels. The first level, corre-
sponding to copying of the action sequence, is called action-level imitation. Actions
may be executed in relation to stimuli, but with a fixed sequential structure. The sec-
ond level, called program-level imitation, corresponds to imitation where the exact
sequence of actions varies, while the overall structure of the behavior is copied. A
set of demonstrations of a behavior that should be imitated at the action level is ex-
pected to have a fairly linear variability, with common statistical features. In contrast,
demonstrations of a behavior at the program level may differ drastically considering
sequence of actions, making it much harder to extract common features among sev-

6

Learning from demonstration

eral demonstrations. In these situations it is often necessary to introduce high level
knowledge about the behavior, often leading to specialized systems directed to LFD
in limited domains.

A third level, the effect-level imitation, was introduced by Nehaniv & Dautenhahn
(2001) in order to better describe imitation between agents with dissimilar body struc-
tures. With an effect level imitation, the imitation may look very different, both in
terms of executed actions and their structure. An effect-level imitation is regarded
successful if the produced effects on the environment, or the agent’s relation to the
environment, matches thaws of the demonstration.

Demiris & Hayes (1997) proposed three slightly different levels: 1) basic imitation
with strong similarities to the notion of action-level imitation, 2) functional imitation
that best corresponds to effect-level imitation and 3) abstract imitation that represents
coordination based on the presumed internal state of the agent rather than the observed
behavior. Demiris and Hayes give the example of making a sad face when someone is
crying. In cases like this, it is clear that quite specific external information is required
to draw the connection between the demonstration and the imitation, or between two
sequences of actions that the human would argue are demonstrations of the same be-
havior.

The quality of an imitation at a specific imitation level, or a combination of imi-
tation levels, has been formalized as a metric of imitation. The metric of imitation is
defined as a weighted sum over all strategy-dependent metrics on all imitation levels
(Billard et al., 2003). A strategy should be understood as an assumption of what is
relevant in the demonstrated behavior. For example, a) to move a specific object, b)
to move the objects in a specific direction, c) to move the objects in a specific se-
quence, d) to perform a specific gesture. The approach takes the perspective that the
most frequent features of demonstrations are the most important and selects a strategy
with optimal agreement among demonstrations. The metric of imitation was origi-
nally demonstrated on a manipulation task with a humanoid robot and has later been
applied to a number of LFD applications. With focus on the correspondence problem,
Alissandrakis et al. (2005) propose an approach to imitation of manipulation tasks.
The what-to-imitate problem is approached by maximizing trajectory agreements of
manipulated objects, using several different metrics. Some metrics encoded absolute
trajectories while other metrics encoded relative object displacement and the relevant
aspects of the behavior were in this way extracted as the common features in the
demonstration set.

2.2 Control

Assuming that a suitable level of imitation has been identified, that the correspondence
problem is solved, and that beginnings and ends of demonstrations have been found,
we are left with the problem of deriving a controller, also referred to as control policy
or forward model, π (Equation 1.1). The current state xt is taken to be the determi-
nant of action, which implies that the state must satisfy the Markov assumption. The
Markov assumption states that given the state-action pair (xt ,ut), xi is independent of

7

Cognition Rehearsed - Chapter 2

x j for all j < t < i. In other words, (xt ,ut) must encapsulate all information available
to predict the future state xi optimally. Argall et al. (2009) divide methods for control
policy derivation into three classes:

1. Mapping functions use the demonstration to directly approximate a mapping
from underlying states to actions.

2. System models use the demonstration to derive a model of the world dynamics.
The model is often combined with a reward function that specifies the value of
being in a certain model state, or taking an action in a certain state.

3. Plans use the demonstration to identify a set of pre- and post-conditions for each
action. A sequence of actions can then be planned using a model of the state
dynamics. The approach is often used together with additional user feedback.

As mentioned in the introduction, the information required by the controller varies
with what kind of behavior it is to produce. It is therefore difficult to define a state
space X suitable for any behavior. A large X , comprising very much information
about the world, will introduce sensing problems when the robot is to identify the
current state. Conversely, a small state space will limit the range of behaviors that
the robot is able to learn. π is therefore often redefined as a function from the most
recent observation yt ∈Y , or the agent’s history of sensor and motor experiences ηt =
(e1,e2, . . . ,et), where ei = (ut−1,yt):

ut = π (yt) (2.1)

ut = π (ηt) (2.2)

Both Equation 2.1 and 2.2 are typical examples of mapping functions. They have
the advantage that X is not explicitly represented and less prior assumptions are in-
troduced into the system. Approaches based on system models or plans are however
using different kinds of world representations. These approaches have the advantage
that complex behavior can be represented more efficiently than possible with mapping
functions, but usually require a state representation that is partly predefined. See Paper
III and the work by Argall et al. (2009) for longer discussions.

The present work primarily investigates techniques associated with mapping func-
tions. In this category, a number of classification and regression approaches can be
found. Billard & Hayes (1999) use a recurrent neural network trained with Hebbian
learning to encode control policies for mobile robots. Hovland et al. (1996) use a
Hidden Markov Model (HMM) trained from human demonstrations to encode a con-
troller for an assembly task. More recently, Calinon & Billard (2005) apply an HMM
to encode gestures of a humanoid robot. Another technique that has recently become
popular is to encode controllers with Gaussian Mixture Models (GMM). Calinon et al.
(2007) applies a mixture of Gaussian/Bernoulli distributions to a chess-piece moving
task for a humanoid robot. GMM was also used by Chernova & Veloso (2007) to
encode controllers for a Sony AIBO robot dog and a simulated driving task. One in-
teresting feature of this work is that the system continuously evaluates the uncertainty

8

Learning from demonstration

of the learned Gaussian mixture set and is able to stop and ask for further directions
when the uncertainty is high, reducing the need for repetitive demonstrations of simple
parts of the behavior.

de Rengervé et al. (2010) compared a GMM based encoding strategy with a Neural
Network (NN) based controller, using a simple robot navigation task. The NN based
controller appears to perform better with limited training data, and can give more di-
rect feedback to the teacher. In contrast, the GMM does better in well known domains,
when statistical features and variations can be properly estimated. The authors suggest
that the two methods could be used complementarily, applying the NN during early
learning sessions, with the GMM taking over when more training has been done.

2.3 Recognition

It is difficult to imagine a situation where one knows how to execute a certain behav-
ior, but is unable to recognize someone else doing the same thing. However, for a
robot, the ability to recognize behavior does not directly come with the ability to ex-
ecute that behavior. Even though a controller generated through LFD may work well
for executing the demonstrated behavior, it does not automatically provide a way to
recognize that behavior.

A number of approaches to segmentation and recognition of behaviors can be
found in the literature. Several measures have been proposed, including variance
thresholding for certain sensor modalities (Peters II et al., 2003; Koenig & Matarić,
2006) and thresholding the mean velocity of joints (Fod et al., 2002; Nakaoka et al.,
2003). Nicolescu (2003) recognizes behavior primitives by matching their pre- and
postconditions with current sensory states. Support Vector Machines have been used
for recognition of upper body postures (Ardizzone et al., 2000) and hand grasps (Zoll-
ner et al., 2002). Bentivegna (2004) uses a nearest-neighbor classifier on state data
to identify skills in a marble maze task. Pook & Ballard (1993) present an approach
where sliding windows of data are classified using Learning Vector Quantization (Ko-
honen, 2003) in combination with a nearest-neighbor classifier. Hidden Markov Mod-
els (HMM) are frequently used for recognition of gestures. One example is the work
by Park et al. (2005) using a camera-based system to track the position of hands an
head of a human, and an HMM for recognition of gestures based on hand and head
positions. Fujie et al. (2004) use an HMM in a similar way, recognizing head gestures
based on the optical flow in the visual scene.

In Paper II, we present and evaluate three additional techniques; β -comparison,
AANN-comparison and S-comparison. β -comparison compares the outcome of a con-
troller in response to the stimuli with observed actions in the demonstration. AANN-
comparison is based on Autoassociative Neural Networks that model each skill such
that the reconstruction error can be used for behavior recognition. Finally, S-comparison
is based on S-Learning (Rohrer & Hulet, 2006b,a) and uses the sequence length as a
measure of behavior similarity.

Even though several of these techniques work well for recognizing many types of
skills, none provide a general solution to the problem. When seen as a classification

9

Cognition Rehearsed - Chapter 2

problem, behavior recognition appears ill posed. Which features of the demonstration
that are relevant depends a lot on the particular behavior to be recognized. A demon-
stration may contain relevant features ranging from simple statistical properties to
symbol-level conditions such as relations between objects (Calinon, 2009). Features
that frequently appear in many demonstrations are often, but not always, more rele-
vant. Overall, it appears that there is a significant need for task-specific biases also in
the recognition process.

The problem of behavior recognition may be better approached by using informa-
tion provided by the controller. One common way to do this is to implement a set of
modules consisting of a controller πM paired with a forward model φM , (e.g. Billard
& Hayes, 1999; Demiris, 1999; Wolpert & Kawato, 1998; Haruno et al., 2001):

ut = πM (xt) (2.3)

ŷt+1 = φM (xt ,ut) (2.4)

where x ∈ XM is the state of module M, tuned for the particular behavior implemented
by πM . The forward model (predictor) computes the expected observation ût+1 as a
result of the action yt taken in state xt under the module’s context. Simultaneously, the
prediction ût , (made in previous time step t−1) is compared to the actual observation
ut , producing a prediction error ∆t = |ut − ût |2. A large ∆t indicates that the forward
model is not tuned to the controller, or that observations do not correspond to the
behavior implemented by πM .

Successful behavior recognition using this approach requires that there be a mod-
ule implementing the behavior to be recognized. However, the approach also supports
learning of modules. Consider a set of modules initially implementing random for-
ward and inverse models. When presented some data, one module will by chance
receive the smallest prediction error and be selected as the responsible module. If the
controller of this module is implemented as a mapping from observations to actions,
it can be directly trained from a demonstration. Similarly, the predictor can be trained
to minimize the prediction error for the presented data. As long as the mapping be-
tween observations and actions does not change, the active module will benefit from
training and produce decreasing prediction errors, causing it to remain active. How-
ever, if large changes in world conditions appear, previous knowledge will no longer
be applicable and the active module will perform worse than random modules. As a
result, another module takes over responsibility and is tuned to the new conditions.

This mechanism is often put forward as an explanation of the role of the motor
system in perception and imitation (e.g. Oztop et al., 2006; Rizzolatti & Craighero,
2004). As Demiris and Hayes put it:

The imitator is not imitating because it is understanding what the demon-
strator is showing, but rather, it is understanding it because it is imitating.
Imitation is used as a mechanism for bootstrapping further learning and
understanding. (Demiris & Hayes, 2002)

10

Learning from demonstration

Each module can be said to implement an internal simulation of sensor consequences
in response to action, and action in response to current state. The module that pro-
duces the best prediction of observed events is selected as the best interpretation of
observed events. That should be understood as one way to give the robot an inner
world, a simulation of the physical world that does not rely on a pre-defined physics
simulator but generated from interactions with the world. Such a simulation is inher-
ently grounded in the robot’s sensors and actuators and is consequently not subject
to the symbol grounding problem (Harnad, 1990). A minimalistic implementation of
this approach can be found in the work by Ziemke et al. (2005). This approach also
has tight connections with the work by Barsalou and colleagues (e.g. Barsalou et al.,
2003; Barsalou, 2009), describing the human cortex as a system simulating sensor
percepts in relation to motor activity.

The use of a predictive measure to match the internal model with the actual world
takes further support in that prediction error is proportional to the amount of free
energy in the system (Friston & Stephan, 2007). Free energy is a thermodynamic
measure describing the amount of work that a thermodynamic system can perform.
In information theory, the term is used as a quantity that bounds the evidence of a
model. For humans and other animals, the model is encoded by the brain and the data
it models is the organism’s interactions with the world. An organism that minimizes
free energy will minimize the risk for unexpected exchanges with the environment,
and consequently control entropy. This can be understood as an argument that any or-
ganism in the physical world must act to prevent surprises that can lead to potentially
harmful states. Prediction error, with a specific measure of precision, is useful as a
method for behavior recognition, not because forward models are very powerful clas-
sifiers, but because the purpose of acting, on a very fundamental level, is to minimize
surprise (Friston, 2009).

11

Cognition Rehearsed - Chapter 2

12

Hierarchical models for learning

CHAPTER 3

Hierarchical models for
learning

This dissertation is a continuation of the work presented in the Licentiate thesis (Billing,
2009). The Licentiate thesis provides an analysis of several neurocomputational mod-
els of the brain (Riesenhuber & Poggio, 1999; Hawkins & Blakeslee, 2002; Haruno
et al., 2003; Wolpert, 2003; Demiris & Simmons, 2006; George, 2008), all with some
emphases on hierarchical structures and connections to the mirror system (Rizzolatti
& Craighero, 2004). In an attempt to identify common features among these models,
four criteria for general learning ability are proposed (Billing, 2009):

1. Hierarchical structures
Knowledge gained from learning should be represented in hierarchies.

2. Functional specificity
Knowledge gained from learning should be organized in functionally special-
ized modules.

3. Forward and inverse
Prediction error reflects how well the state definition satisfies the Markov as-
sumption, and by consequence a forward model can be used to improve knowl-
edge representation when paired with an inverse model.

4. Bottom-up and top-down
Both bottom-up and top-down signals must be propagated through the hierarchi-
cal structure. Bottom-up signals represent the state of modules, and top-down
signals specify context.

Criteria 2 and 3 have already been discussed in the previous chapter, but criteria 1
and 4 may need some elaboration. In Section 3.1, some arguments for introducing
hierarchies with the specific information flow given by Criterion 4 is presented. The
argumentation leads up to a specific hierarchical architecture based on PSL, presented
in Section 3.2.

13

Cognition Rehearsed - Chapter 3

3.1 Motivation for hierarchies

Hierarchical structures should be thought of as a useful and very general bias for
representing knowledge about the physical world. Hierarchies are found almost ev-
erywhere in nature. Humans and animals consist of several body parts, which in turn
consist of even smaller units down to cells and atoms. Scaling upwards, any organ-
ism lives in some kind of environment which can be viewed on many levels up to a
scale where the earth is one component in an even greater ecosystem. The hierarchi-
cal structure of vegetables is even more apparent. Trees consists of branches which
consist of even smaller branches which have leaves. Leaves have their own hierar-
chical structure which in fact resembles the tree itself in many ways. This apparent
self-similarity of many natural structures has been extensively studied from a theoret-
ical perspective as fractals, with works by Mandelbrot (1983) and Wolfram (2002) as
prominent examples.

Hierarchies also exist in the temporal domain. Natural systems tend to have a
nested organization with large-scale system variables and small-scale sub-system level
variables. Large-scale system variables are often changing slower than the variables
of its sub-systems Werner (1999). A common example of this temporal and spatial
hierarchy can be drawn from weather. On a large scale, one can observe long term
variations, such as seasons or even global warming. Simultaneously, there are local
variations in the weather, such as storms and rain, which change much faster (George,
2008, p. 95).

Functional hierarchies appear to be a critical aspect of neural information process-
ing, both spatially (Felleman & Van Essen, 1991; Hilgetag et al., 2000) and temporally
(Boemio et al., 2005; Fuster, 2001). Further support comes from behavioral studies,
for example the work by Byrne & Russon (1998) reporting hierarchical structure in
voluntary behavior of great apes.

In a more technical respect, Criterion 1 can be motivated through an efficient divi-
sion of labor between different parts of the system. A flat architecture implementing
a set of functionally specific modules, as proposed in Section 2.3, relies only on for-
ward models in order to control the switching between modules. Putting these mod-
ules into a hierarchy produces a system able to represent complex behaviors while
keeping each module relatively simple. Modules at the bottom layer interacts directly
with sensors and actuators of the robot at high temporal resolution. Modules higher
up in the hierarchy have decreasing resolution, allowing these modules to efficiently
express dependencies over longer periods of time. State variables that change slowly
compared to a specific module’s resolution are not included in the state description for
that module, but are assumed to be provided by modules higher in up the hierarchy.
This information is often referred to as the module’s context (Wolpert & Ghahramani,
2000). Since modules higher up in the hierarchy are working at a lower temporal
resolution, they can more easily capture slow variables, providing contextual informa-
tion to lower modules. Conversely, variables that change quickly in comparison to the
temporal resolution are handled lower in the hierarchy. This allows each module to be
implemented as a semi-reactive controller, where the behavior depends on relatively
recent states. Another advantage of this kind of architecture is that updates of a single

14

Hierarchical models for learning

behavior or parts of a behavior will only require updates of a few modules and will
not propagate changes to other parts of the system.

Wolpert & Ghahramani (2000) take the example of picking up a milk carton. The
controller executing the behavior must take the amount of milk in the carton into
consideration. It would be possible to consider the amount of milk as part of the
module’s state space, but that would pose a difficult sensing problem since the amount
of milk is not directly visible. More importantly, since the amount of milk normally
is constant during the operation of the module, it is not necessary to include as part of
the state description. Instead, the amount of milk in the carton is treated as contextual
information and handled by modules higher up in the hierarchy.

As the controller starts executing the lifting behavior, the forward model will pro-
duce predictions of expected sensor consequences of executed actions. If the expec-
tation about the amount of milk is wrong, it will show up as large prediction errors
when grasping the carton. This information is propagated upwards in the hierarchy,
leading to a change in contextual information that better matches the actual amount of
milk in the carton.

For this hierarchy of modules to be useful the system must be able to compute
the system state at every level in the hierarchy. With the exception of modules at the
bottom level (Layer 1), the input to each module is a context match for modules at
the layer directly below. A context match should be understood as an estimate of how
well present circumstances match the module’s context, normally computed as a func-
tion of prediction error. The output of each module at Layer 2 and higher represents
prior probabilities for each module in the layer below. This top-down information
is often called a responsibility signal (e.g. Haruno et al., 2001) and is used both for
control and training. During learning, only active modules are updated to fit present
circumstances, while inactive modules remain unchanged. Ideally, this leads to a sys-
tem where each module is in control only when the world satisfies its context. This
interaction between layers in the hierarchy is one way to fulfill Criterion 4.

While the architecture presented here describes functional specificity as a set of
distinct modules, it should be pointed out that this notion of module is quite different
from how the term is used in many other robotic architectures, for example hybrid
and deliberate systems (Murphy, 2000). These architectures often emphasize mod-
ularization in the sense that it should be possible to develop and test each module
separately. This is not at all emphasized in the architecture presented here. In con-
trast, each module is to a high degree working in the environment constituted by the
other modules and the overall behavior of the system is an emergent property of the
interaction between modules, rather than a strict division of labor.

Criterion 3 was formulated to put emphasis on the functional specificity rather
than on crisp modularization. An architecture based on crisp modules requires that
each demonstrated sequence is interpreted as a specific sequence of selected modules,
introducing a conflict between generalization and segmentation (Yamashita & Tani,
2008). This kind of architecture can potentially benefit from a partial overlap between
modules. The important property of functional specificity is that errors identified un-
der a certain context should not automatically propagate through the whole system,
but only take effect within that particular context. A similar argument applied to re-

15

Cognition Rehearsed - Chapter 3

inforcement learning is put forward by Winberg & Balkenius (2007). Most work on
reinforcement learning treats rewards and penalties as positive and negative changes
of a single state value variable, respectively. Winberg and Balkenius demonstrate that
learning time is decreased if rewards are generalized to similar states, while penalties
are only applied to the current state. The reasoning behind this argument is that any
over-generalizations of rewards will eventually be identified, since the agent will act
to reach these states. In contrast, states with negative value will be avoided, causing
any over-generalizations to remain.

One architecture able to share knowledge between different primitive behaviors
is the recurrent neural network RNNPB (Tani et al., 2004). Both input and output
layer of the network contain sensor and motor nodes, as well as nodes with recurrent
connections. The input layer is given a set of extra nodes, representing parametric
bias (PB). The network is trained to minimize prediction error, both by training the
network using back-propagation and by changing the PB input vector. The PB vector
is however updated slowly, such that it organizes into what could be seen as a context
layer for the rest of the network. In addition to giving the network the ability to repre-
sent different behaviors that share knowledge, the PB vector can be used for behavior
recognition. In a continuation of this work, Yamashita & Tani (2008) demonstrate
the emergence of a functional hierarchy in an architecture based on a continuous time
recurrent neural network (CTRNN). Context nodes (nodes that are not connected to
inputs or outputs) of the network are given different time constants. Through training,
slow nodes drive switching between behaviors, while fast nodes express dynamics
within each behavior.

While the present work is directed to methods for robot learning, similar argu-
ments can be found in several fields of research. The four criteria presented above
embody the assumption that a wide range of cognitive phenomena can be explained
through one, or a few, basic mechanisms. As mentioned in the previous section, Fris-
ton (2009) uses the notion of free-energy to describe such a fundamental mechanism,
applying to any living organism. In a less mathematical formulation, Hawkins &
Blakeslee (2002) introduce the notion of a common cortical algorithm as a basic com-
putational description of the brain. Activity Theory (Kaptelinin & Nardi, 2006) de-
scribes high level cognitive function, including consciousness, as inherently grounded
in action and learning as a progressive internalization of the physical world leading to
hierarchical representations. A longer discussion on the brain as a prospective organ
is found in the work by Sjölie (2011).

3.2 Hierarchical predictive learning

Based on the four criteria outlined in the previous section, this section describes a
general purpose architecture for LFD. The architecture presented here is not fully im-
plemented and evaluated, but builds on the results from Papers IV to VII. A central
part of this architecture is the PSL algorithm. The algorithm treats control as a pre-
diction problem, such that the next action is selected based on the sequence of recent
sensory-motor events. In addition, PSL also produce predictions of expected sensor

16

Hierarchical models for learning

states. While these are not directly useful for control, predictions of sensor states
appear to serve well as a method for behavior recognition, as proposed in Section 2.3.

PSL has many interesting properties as a learning algorithm for robots. It is model
free, meaning that it introduces very few assumptions into learning and needs little task
specific configuration. PSL can be seen as a variable-order Markov model. Starting
out from a reactive (first-order) model, PSL estimates transition probabilities between
sensory-motor states. For states that do not display the Markov property, the order is
increased and PSL models the transition probability based on several passed events.
In this way, PSL will progressively gain memory for the parts of the behavior that
cannot be modeled in a reactive way. Knowledge is stored as hypotheses h, describing
a statistical relation between a sequence of passed events

(
et−|h|+1,et−|h|+2, . . . ,et

)
,

and a future event et+1:

h :
(
et−|h|+1,et−|h|+2, . . . ,et

) C(h)⇒ et+1 (3.1)

where C (h) is the confidence of h and |h| denotes the length of h, i.e., the number of
left-hand-side conditions. In Paper VII, we present a version of PSL where C (h) is
context dependent. A hypothesis that is fairly weak in the general case can in this way
still receive high confidence in a particular context. Given a number of contexts C,
defined as fuzzy sets over all h, the belief in each context λt (C) at time t is given by
Bayes’ rule:

λt (C) =
λt−1 (C)exp

(
|et−êC

t |2
2σ2

)
N
∑

i=1

[
λt−1 (Ci)exp

(
|et−êC

t |2
2σ2

)] (3.2)

where N is the number of contexts and êC
t is the prediction produced by PSL within

context C. The variance σ2 is used as a scaling constant controlling the size of confi-
dence changes in relation to prediction error size.

λt (C) can be used to directly control which context is to be responsible at a certain
time (Paper VII). Transitions between contexts may however also be controlled by
another instance of PSL, running at a context level (Figure 3.1). In each time step,
PSL queries the knowledge base selecting the best hypothesis based on how well each
hypothesis matches observed events, and respective confidence C (h). At the context
level, a similar computation is made, selecting a context hypothesis h′ based on the
sequence of transitions between contexts. The instance of PSL running at the context
level handles data with lower temporal resolution, allowing context hypotheses with
relatively few left hand side conditions to stretch over fairly long periods of time.

While PSL at the observation level works directly with the sequence of sensory-
motor events, the context layer works with information that can not be predicted at the
observation level (Figure 3.2). Sensory-motor events that can be correctly predicted
by the observation layer does not contain any new information, and is therefore fil-
tered away. Conversely, prediction error represents new information that could not be
explained by the observation layer, and is therefore regarded as more valuable. This

17

Cognition Rehearsed - Chapter 3

argument relates to the discussion in Section 2.3. A successful prediction at the con-
text level will reduce prediction errors at the observation level, producing a system
that acts to reduce predictions at both levels of abstraction.

In Paper VII, we use manually defined contexts trained from demonstrations of
different behaviors. However, the teacher’s interpretation of what is one behavior,
and what is another, does not necessarily correspond to the robot’s need to categorize
experiences. It may consequently be an advantage not to rely on manually defined
contexts. Automatic identification of suitable contexts could possibly be formulated
as an optimization problem where the total entropy of the model, over all contexts, is
to be minimized.

If a context layer can be organized dynamically, it opens the possibility to add a
second context layer that interacts with the first context layer in a similar way that
the first context layer interacts with the observation layer (Figure 3.2). Potentially,
the hierarchy could be extended even further, to create a fully hierarchical system
minimizing prediction errors at many levels of abstraction.

18

Hierarchical models for learning

Past Future

λ

Observed event sequence

Context sequence

e
^

t+1

h’

C(h)

ht

Ct+1

t

^

Figure 3.1: Interaction between PSL at observation level and PSL at context level.
h is the selected hypothesis at observation level and h′ is a hypothesis selected by
PSL running at context level. êt+1 is the predicted event at observation level and Ĉt+1
represents predicted context responsibility.

Past Future

Observation level

Context level 1

Context level 2

ht-1 ht

ht-2ht-3ht-4

h’t-1 h’th’t-2h’h’h’ t-3h’ h’ h’t-4h’h’

Figure 3.2: Three layer architecture with one instance of PSL is running at each level.

19

Cognition Rehearsed - Chapter 3

20

Summary of articles

CHAPTER 4

Summary of articles

Starting out from a cognitive perspective, Paper I reviews the problem of robot learn-
ing and representation of behavioral knowledge in a broad sense. Several robotic
paradigms are compared and put in relation with the theory of extended mind (Clark
& Chalmers, 1998), distributed cognition (Hutchins, 1995) and situated action (Such-
man, 1987). The paper was an early attempt to identify how these cognitive theo-
ries apply to robotics. The work recognizes the importance of separating the agent’s
perspective from the perspective of the observer and argues that many of the funda-
mental problems of artificial intelligence can be solved if the robot’s knowledge is
represented as a coordination between sensors and actuators, rather than as an explicit
world model. At the same time, notions of emergent behavior and self-organization,
that are often brought up in response to traditional representations, are criticized since
they rarely provide a solution to the kind of problems that explicit representations do.

Paper II presents an evaluation of several techniques for behavior recognition. The
use of behavior primitives with behavior recognition is one way to use previous knowl-
edge in order to generalize the demonstration such that the behavior can be executed
under varying conditions. While behavior recognition is possible to implement for
particular behaviors or classes of behaviors, it appears as a very difficult problem in
the general case. One reason for this may lie in a vague definition of behavior and lack
of general bias for selecting one interpretation over another. Large parts of this disser-
tation argues for the use of a predictive measure in order to approach the problem of
behavior recognition in a general way.

Paper III presents a formalization of LFD, specifically directed to LFD when using
behavior primitives. Central concepts in LFD are defined, including behavior, demon-
stration, sensors and actuators. A possibility to use behavior primitives as a way to
interpret and display a demonstration for a human user is also explored. A visual-
ization of the robot’s interpretation of the behavior could serve both as a way for the
human user to evaluate the effect of learning, and as a way to give feedback to the
robot.

Papers IV to VII present and evaluate a specific technique for LFD called Predic-
tive Sequence Learning (PSL). In Paper IV, PSL is used as a controller for a miniature
Khepera robot (K-Team, 2007). The result from this work indicates that PSL is ap-
plicable as a controller for simpler behaviors. PSL is however unable to correctly re-
produce more complex behaviors. The reason for this is that knowledge of one part of
the behavior may interfere with knowledge of other parts, causing PSL to mix up situ-

21

Cognition Rehearsed - Chapter 4

ations and select inappropriate actions. This problem, called knowledge interference,
could potentially be solved by integrating PSL with a high-level controller that selects
which part of the PSL knowledge base that should be active in a certain situation. One
such high-level controller, based on semantic networks, is proposed by Fonooni et al.
(2012). Parts of the PSL knowledge base is in this architecture integrated as nodes in
the semantic network.

In Paper V, an evaluation of two ways to apply PSL as a method for behavior
recognition is presented, including a comparison with previous work from Paper II.
The evaluation shows that PSL is able to recognize previously learned behaviors in a
demonstration. The recognition is based on the same model as PSL uses for control. If
this results holds in the general case, PSL could potentially constitute one component
in a dynamic hierarchical system similar to the one presented in Chapter 3.

In Paper VI, a new version of PSL based on Fuzzy Logic is presented and com-
pared to the original algorithm. Fuzzy PSL handles dimensionality better than the
original, discrete, version of the algorithm. This allows us to scale up the problem to
a Robosoft Kompai robot (Robosoft, 2011) acting in a simulated apartment environ-
ment. Paper VII extends this work by integrating on-line behavior recognition with
the PSL-based controller. We are able to reproduce the results from both Paper IV
and V using Fuzzy PSL and the new evaluation environment. The on-line behavior
recognition is used to compute a responsibility signal, controlling which part of the
PSL knowledge base that is active at a certain point in time. In this way, the problem
of knowledge interference appears more manageable.

22

Contributions

CHAPTER 5

Contributions

The primary contribution of this dissertation lies in the design and evaluation of Pre-
dictive Sequence Learning (PSL) (Paper IV to VII). The algorithm has a straight for-
ward design that introduces the right kind of biases for general learning ability in
robots. Two important attributes are the semi-reactive behavior and a progressive ex-
tension of the knowledge base. The semi-reactive behavior could probably be captured
just as well by many other algorithms, for example a recurrent neural network. The
progressive extending knowledge base is less common and reduces the risk for catas-
trophic forgetting present in many other approaches, including neural networks. On
the negative side, PSL in its current form can not cope with high-dimensional data
in a good way. Investigating how this could be solved could be one focus for a con-
tinuation of this work. Improved handling of high-dimensional data could possibly
be achieved in a similar way that the combinatorial explosion in the temporal dimen-
sion is handled through the use of contexts (Paper VII). While we have shown that
PSL does work as controller and as a method for behavior recognition in some fairly
realistic robotic applications, much more work is needed to evaluate the algorithm.
Comparisons with a recurrent neural network such as RNNPB (Tani et al., 2004) or
Dynamic Field Theory (Amari, 1977) could be interesting directions for future work.

In Paper III, we present a formalization of LFD. This formalism itself is not revo-
lutionary in any way, to large extent it adapts descriptions that have been standard in
the field for a long time. However, the paper describes important problems of LFD,
especially with a focus on introduction of bias in learning, in a novel way.

Another contribution of this dissertation is the hierarchical architecture for general
purpose LFD presented in Section 3.2 that builds on four criteria for general learning
ability originally presented in the Licentiate thesis (Billing, 2009). In many respects,
the presented architecture is not new, similar approaches have been around in the
literature for more than ten years. However, the present work adds new properties
by emphasizing semi-reactive modules and by proposing a concrete system allowing
partial knowledge overlap between functionally specific modules. One interesting di-
rection for future work is to evaluate how human notions of behavior correspond to the
hierarchical system’s need to categorize information into contexts on different levels.
Above all, I hope that the present work approaches the question of general machine
learning in a realistic way. Through the work with this dissertation I have been con-
vinced that it is possible to create computer systems able to learn in a similar way that
humans and other animals do. I believe that this line of research can support develop-

23

Cognition Rehearsed - Chapter 5

ment of useful robots and other machines, but also contribute to a better understanding
of human cognition.

24

Bibliography

Bibliography

Alissandrakis, A., Nehaniv, C. L., & Dautenhahn, K. (2002). Imitation With ALICE:
Learning to Imitate Corresponding Actions Across Dissimilar Embodiments. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 32,
482–496.

Alissandrakis, A., Nehaniv, C. L., Dautenhahn, K., & Saunders, J. (2005). An Ap-
proach for Programming Robots by Demonstration: Generalization Across Differ-
ent Initial Configurations of Manipulated Objects. In Proceedings of 2005 Interna-
tional Symposium on Computational Intelligence in Robotics and Automation (pp.
61–66). Espoo, Finland.

Amari, S. (1977). Dynamics of Pattern Formation in Lateral-Inhibition Type Neural
Fields. Biological Cybernetics, 27(2), 77–87.

Ardizzone, E., Chella, A., & Pirrone, R. (2000). Pose classification using support
vector machines. In Proceedings of the IEEE-INNS-ENNS International Joint Con-
ference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium (pp. 317–322 vol.6).

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.

Arkin, R. C. (1998). Behaviour-Based Robotics. MIT Press.

Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 364(1521),
1281–1289.

Barsalou, L. W., Simmons, K. W., Barbey, A. K., & Wilson, C. D. (2003). Grounding
conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences,
7(2), 84–91.

Bentivegna, D. C. (2004). Learning from Observation using Primitives. PhD thesis,
Georgia Institute of Technology.

Berk, L. E. & Winsler, A. (1995). Scaffolding Children’s Learning: Vygotsky and
Early Childhood Education. National Association for the Education of You.

Berthouze, L. & Metta, G. (2005). Epigenetic robotics: modelling cognitive develop-
ment in robotic systems. Cognitive Systems Research, 6(3), 189–192.

25

Cognition Rehearsed - Bibliography

Billard, A., Epars, Y., Cheng, G., & Schaal, S. (2003). Discovering imitation strate-
gies through categorization of multi-dimensional data. In Proceedings of the 2003
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, volume 3 (pp. 2398–
2403 vol.3). Las Vegas, Nevada.

Billard, A. & Hayes, G. (1999). DRAMA, a Connectionist Architecture for Control
and Learning in Autonomous Robots. Adaptive Behavior, 7(1), 35–63.

Billing, E. A. (2009). Cognition Reversed - Robot Learning from Demonstration. Li-
centiate thesis, Umeå University, Department of Computing Science, Umeå, Swe-
den.

Bischoff, R. & Guhl, T. (2009). Robotic Vision to 2020 and Beyond - The Strategic
Research Agenda for Robotics in Europe.

Boemio, A., Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asym-
metric temporal sensitivity in human auditory cortices. Nature neuroscience, 8(3),
389–95.

Byrne, R. W. & Russon, A. E. (1998). Learning by Imitation: A Hierarchical Ap-
proach. The Journal of Behavioral and Brain Sciences, 16(3).

Calinon, S. (2009). Robot Programming by Demonstration - A Probabilistic Ap-
proach. EFPL Press.

Calinon, S. & Billard, A. (2005). Recognition and reproduction of gestures using
a probabilistic framework combining PCA, ICA and HMM. In Proceedings of
the International Conference on Machine Learning (ICML) (pp. 105–112). Bonn,
Germany: ACM.

Calinon, S., Guenter, F., & Billard, A. (2007). On Learning, Representing and Gen-
eralizing a Task in a Humanoid Robot. IEEE Transactions on Systems, Man and
Cybernetics, Part B. Special issue on robot learning by observation, demonstration
and imitation, 37(2), 286–298.

Chernova, S. & Veloso, M. (2007). Confidence-based policy learning from demon-
stration using Gaussian mixture models. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems - AAMAS ’07 (pp.
1315–1322). New York, New York, USA: ACM Press.

Clark, A. & Chalmers, D. J. (1998). The Extended Mind. Analysis, 58, 10–23.

de Rengervé, A., D’halluin, F., Andry, P., Gaussier, P., & Billard, A. (2010). A study
of two complementary encoding strategies based on learning by demonstration for
autonomous navigation task. In Proceedings of the Tenth International Conference
on Epigenetic Robotics Lund, Sweden.

Demiris, J. & Hayes, G. (1997). Do robots ape? In Proceedings of the AAAI Fall
Symposium on Socially Intelligent Agents (pp. 28–31).

26

Bibliography

Demiris, J. & Hayes, G. R. (2002). Imitation as a dual-route process featuring pre-
dictive and learning components: A biologically plausible computational model.
In K. Dautenhahn & C. L. Nehaniv (Eds.), Imitation in animals and artifacts (pp.
327–361). Cambridge, MA, USA: MIT Press.

Demiris, Y. (1999). Movement Imitation Mechanisms in Robots and Humans. PhD
thesis, University of Edinburgh.

Demiris, Y. & Simmons, G. (2006). Perceiving the unusual: Temporal properties of
hierarchical motor representations for action perception. Neural Networks, 19(3),
272–284.

Felleman, D. J. & Van Essen, D. C. (1991). Distributed Hierarchical Processing in the
Primate Cerebral Cortex. Cereb Cortex, 1, 1–17.

Fod, A., Matarić, M., & Jenkins, O. C. (2002). Automated derivation of primitives for
movement classification. Autonomous Robots, (pp. 39–54).

Fonooni, B., Hellström, T., & Janlert, L. E. (2012). Learning High-Level Behaviors
from Demonstration through Semantic Networks. In Proceedings of the 4th In-
ternational Conference on Agents and Artificial Intelligence (ICAART) (to appear)
Vilamoura, Algarve, Portugal.

Friston, K. J. (2009). The free-energy principle: a rough guide to the brain? Trends in
Cognitive Sciences, 13(7), 293–301.

Friston, K. J. & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3),
458, 417.

Fujie, S., Ejiri, Y., Nakajima, K., Matsusaka, Y., & Kobayashi, T. (2004). A con-
versation robot using head gesture recognition as para-linguistic information. In
13th IEEE International Workshop on Robot and Human Interactive Communica-
tion (ROMAN 2004). (pp. 159–164).

Fuster, J. M. (2001). The Prefrontal Cortex - An Update. Neuron, 30(2), 319–333.

George, D. (2008). How the Brain might work: A Hierarchical and Temporal Model
for Learning and Recognition. Phd thesis, Stanford University.

Harnad, S. (1990). The Symbol Grounding Problem. Physica, D(42), 335–346.

Haruno, M., Wolpert, D. M., & Kawato, M. (2001). Mosaic model for sensorimotor
learning and control. Neural computation, 13(10), 2201–2220.

Haruno, M., Wolpert, D. M., & Kawato, M. (2003). Hierarchical MOSAIC for move-
ment generation. In International Congress Series 1250 (pp. 575– 590).: Elsevier
Science B.V.

Hawkins, J. & Blakeslee, S. (2002). On Intelligence. Times Books.

27

Cognition Rehearsed - Bibliography

Hilgetag, C. C., O’Neill, M. A., & Young, M. P. (2000). Hierarchical organization of
macaque and cat cortical sensory systems explored with a novel network processor.
Philosophical transactions of the Royal Society of London. Series B, Biological
sciences, 355(1393), 71–89.

Hovland, G., Sikka, P., & McCarragher, B. (1996). Skill acquisition from human
demonstration using a hidden Markov model. In Proceedings of IEEE International
Conference on Robotics and Automation, volume 3 (pp. 2706–2711).

Hutchins, E. (1995). Cognition in the Wild. Cambridge, Massachusetts: MIT Press.

K-Team (2007). Khepera robot. www.k-team.com.

Kaptelinin, V. & Nardi, B. A. (2006). Acting with Technology: Activity Theory and
Interaction Design. The MIT Press.

Koenig, N. & Matarić, M. J. (2006). Behavior-Based Segmentation of Demonstrated
Tasks. In Proceedings of the International Conference on Development and Learn-
ing Bloomington, USA.

Kohonen, T. K. (2003). Learning vector quantization. In M. A. Arbib (Ed.), The
Handbook of Brain Theory and Neural Networks (pp. 631–638). MIT Press.

Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. W. H. Freeman.

Matarić, M. J. (2002). Sensory-motor primitives as a basis for imitation: linking
perception to action and biology to robotics. In Imitation in animals and artifacts
(pp. 391–422). MIT Press.

Murphy, R. R. (2000). Introduction to AI Robotics. MIT Press.

Myers, B. C. S. & Rabiner, L. R. (1981). A Comparative Study of Several Dynamic
Time-Warping. The Bell System Technical Journal, 60(7), 1389–1409.

Nakaoka, S., Nakazawa, A., Yokoi, K., & Ikeuchi, K. (2003). Recognition and gener-
ation of leg primitive motions for dance imitation by a humanoid robot. In Proceed-
ings of 2nd International Symposium on Adaptive Motion of Animals and Machines
Kyoto, Japan.

Nehaniv, C. L. & Dautenhahn, K. (1999). Of hummingbirds and helicopters: An
algebraic framework for interdisciplinary studies of imitation and its applications.
Interdisciplinary Approaches to Robot Learning, 24, 136–161.

Nehaniv, C. L. & Dautenhahn, K. (2001). Like Me? - Measures of Correspondence
and Imitation. Cybernetics and Systems, 32, 11–51.

Nicolescu, M. (2003). A Framework for Learning from Demonstration, Generaliza-
tion and Practice in Human-Robot Domains. PhD thesis, University of Southern
California.

28

Bibliography

Otero, N., Saunders, J., Dautenhahn, K., & Nehaniv, C. L. (2008). Teaching robot
companions: the role of scaffolding and event structuring. Connection Science, 20,
111–134.

Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: a compu-
tationally guided review. Neural networks : the official journal of the International
Neural Network Society, 19(3), 254–71.

Pal Robotics (2011). REEM Humanoid Service Robot. www.pal-robotics.com.

Park, H., Kim, E., Jang, S., Park, S., Park, M., Kim, H., Marques, J., Pérez de la
Blanca, N., & Pina, P. (2005). HMM-Based Gesture Recognition for Robot Control.
In J. S. Marques, N. Pérez de la Blanca, & P. Pina (Eds.), LNCS Pattern Recognition
and Image Analysis, volume 3522 of Lecture Notes in Computer Science (pp. 695–
716). Berlin, Heidelberg: Springer Verlag.

Peters II, R. A., Campbell, C. L., Bluethman, W. J., & Huber, E. (2003). Robonaut
Task Learning through Teleoperation. In Proceedings of the 2003 IEEE Intl. Con-
ference on Intelligent Robots and Automation (pp. 23–27). Taipei, Taiwan.

Pook, P. K. & Ballard, D. H. (1993). Recognizing Teleoperated Manipulations. In
Proceedings on 1993 IEEE International Conference on Robotics and Automation,
1993. (pp. 578–585).

Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of Object Recognition in
Cortex. Nature Neuroscience, 2(11), 1019–25.

Rizzolatti, G. & Craighero, L. (2004). The Mirror-Neuron System. Annual Review of
Neuroscience, 27, 169–192.

Robosoft (2011). Kompai Robot, www.robosoft.com.

Rohrer, B. & Hulet, S. (2006a). A learning and control approach based on the human
neuromotor system. In Proceedings of the First IEEE/RAS-EMBS International
Conference on Biomedical Robotics and Biomechatronics. (pp. 57–61).

Rohrer, B. & Hulet, S. (2006b). BECCA - A Brain Emulating Cognition and Con-
trol Architecture. Technical report, Cybernetic Systems Integration Department,
Sandria National Laboratories, Alberquerque, NM, USA.

Sjölie, D. (2011). Reality-based brain-computer interaction. Licentiate thesis, De-
partment of Computing Science, Umeå University, Umeå, Sweden.

Suchman, L. A. (1987). Plans and Situated Actions. Cambride University Press.

Tani, J., Ito, M., & Sugita, Y. (2004). Self-Organization of Distributedly Represented
Multiple Behavior Schemata in a Mirror System : Reviews of Robot Experiments
Using RNNPB. Neural Networks, 17, 1273–1289.

Taylor III, A. (2011). Is Google Motors the new GM? CNN Money.

29

Cognition Rehearsed - Bibliography

Thrun, S. & Pratt, L. Y., Eds. (1998). Learning to Learn. Kluwer Academic Publish-
ers.

Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological Pro-
cesses. Harvard University Press, 14th edition.

Werner, B. T. (1999). Complexity in Natural Landform Patterns. Science, 284(5411),
102–104.

Winberg, S. & Balkenius, C. (2007). Generalization and Specialization in Reinforce-
ment Learning. In L. Berthouze, C. G. Prince, M. Littman, H. Kozima, & C. Balke-
nius (Eds.), Proceedings of the Seventh International Conference on Epigenetic
Robotics: Modeling Cognitive Development in Robotic Systems. Lund, Sweden.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media, 1 edition.

Wolpert, D. H. & Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

Wolpert, D. M. (2003). A unifying computational framework for motor control and
social interaction. Phil. Trans. R. Soc. Lond., B(358), 593–602.

Wolpert, D. M. & Ghahramani, Z. (2000). Computational principles of movement
neuroscience. Nature Neuroscience, 3, 1212–1217.

Wolpert, D. M. & Kawato, M. (1998). Multiple paired forward and inverse models for
motor control. Neural Networks, 11(7-8), 1317–1329.

Yamashita, Y. & Tani, J. (2008). Emergence of functional hierarchy in a multiple
timescale neural network model: a humanoid robot experiment. PLoS computa-
tional biology, 4(11), e1000220.

Ziemke, T., Jirenhed, D. A., & Hesslow, G. (2005). Internal simulation of perception:
a minimal neuro-robotic model. Neurocomputing, 68, 85–104.

Zollner, R., Rogalla, O., Dillmann, R., & Zollner, M. (2002). Understanding users
intention: programming fine manipulation tasks by demonstration. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and System, volume 2
(pp. 1114–1119).

30

I

Paper I

Cognitive Perspectives on Robot Behavior∗

Erik Billing

Dept. Computing Science, Umeå University, SE-901 87 Umeå, Sweden
billing@cs.umu.se

Abstract: A growing body of research within the field of intelligent robotics argues
for a view of intelligence drastically different from classical artificial intelligence and
cognitive science. The holistic and embodied ideas expressed by this research pro-
mote the view that intelligence is an emergent phenomenon. Similar perspectives,
where numerous interactions within the system lead to emergent properties and cog-
nitive abilities beyond that of the individual parts, can be found within many scientific
fields. With the goal of understanding how behavior may be represented in robots, the
present review tries to grasp what this notion of emergence really means and compare
it with a selection of theories developed for analysis of human cognition, including the
extended mind, distributed cognition and situated action. These theories reveal a view
of intelligence where common notions of objects, goals, language and reasoning have
to be rethought. A view where behavior, as well as the agent as such, is defined by the
observer rather than given by their nature. Structures in the environment emerge by
interaction rather than recognized. In such a view, the fundamental question is how
emergent systems appear and develop, and how they may be controlled.

Keywords: Behavior based control, Cognitive artificial intelligence, Distributed cog-
nition, Ontology, Reactive robotics, Sensory-motor coordination, Situated action.

∗ Copyright c© INSTICC Press. All rights reserved. Reprinted, with permission, from 2010 International
Conference on Agents and Artificial Intelligence, Special Session on Languages with Multi-Agent Sys-
tems and Bio-Inspired Devices

33

34

COGNITIVE PERSPECTIVES ON ROBOT BEHAVIOR§

Erik A. Billing
Department of Computing Science, Umeå University, Umeå, Sweden

billing@cs.umu.se

Keywords: Behavior based control, Cognitive artificial intelligence, Distributed cognition, Ontology, Reactive robotics,
Sensory-motor coordination, Situated action.

Abstract: A growing body of research within the field of intelligent robotics argues for a view of intelligence drastically
different from classical artificial intelligence and cognitive science. The holistic and embodied ideas expressed
by this research promote the view that intelligence is an emergent phenomenon. Similar perspectives, where
numerous interactions within the system lead to emergent properties and cognitive abilities beyond that of the
individual parts, can be found within many scientific fields. With the goal of understanding how behavior
may be represented in robots, the present review tries to grasp what this notion of emergence really means
and compare it with a selection of theories developed for analysis of human cognition, including the extended
mind, distributed cognition and situated action. These theories reveal a view of intelligence where common
notions of objects, goals, language and reasoning have to be rethought. A view where behavior, as well as
the agent as such, is defined by the observer rather than given by their nature. Structures in the environment
emerge by interaction rather than recognized. In such a view, the fundamental question is how emergent
systems appear and develop, and how they may be controlled.

1 INTRODUCTION

During the last decades, intelligent robotics has drawn
towards a pragmatic view where no single design phi-
losophy is clearly dominating. On the one hand, low
level interaction with the world is often implemented
with a reactive design philosophy inspired by Rodney
Brooks’ work, (Brooks, 1986; Brooks, 1990; Brooks,
1991a; Brooks, 1991b). On the other hand, classi-
cal AI-elements such as cartographers and planners
are common modules for the high level control. Si-
multaneously, increasing system size and complexity
raises requirements on well structured and modular
system designs. Colored by an object-oriented pro-
gramming approach, the system behavior is imple-
mented through composition of modules. This kind of
systems is commonly referred to as hybrid architec-
tures. (Gowdy, 2000; Murphy, 2000; Doherty et al.,
2004)

In a wider perspective hybrid systems propose a

§Parts of this text also appear as a technical report:
Billing, E. A. (2007). Representing Behavior - Distributed
theories in a context of robotics, UMINF 07.25, Department
of Computing Science, Umeå University, Sweden.

view of intelligence where simple behavior, like walk-
ing or grasping objects are typically reactive, while
more complex tasks, like choosing a path or select-
ing objects are products of reasoning upon internal
representation. “The robot can think in terms of a
closed world, while it acts in an open world”, (Mur-
phy, 2000).

This view is not totally distant from the one pro-
posed by modern cognitive science. The information
processing model is still dominant for describing high
level cognition (Stillings et al., 1995), while more
reactive models have become popular for describing
lower levels of control, especially within cognitive
neuroscience (Shea and Wulf, 1995; Kaiser and Dill-
mann, 1996).

Even though hybrid architectures are today clearly
dominating the field of intelligent robotics, there are
several alternatives. A fundamentally different stand-
point is taken by researchers proposing an embod-
ied and holistic approach, (Mataric̀, 1997; Pfeifer and
Scheier, 1997; Pfeifer and Scheier, 2001; Nicolescu,
2003). As these theories enforce concepts of dis-
tributed and emergent behavior, the present work is
an attempt to analyze these notions of emergence ac-
tually mean. Similar ideas can be found within a vari-

373

35

ety of fields, including the extended mind (Clark and
Chalmers, 1998), distributed cognition (Hutchins,
1995) and situated action (Suchman, 1987). All these
theories are, in a general sense, studies of behavior
beyond that of the individual, in groups or in inter-
action with artifacts. As such, these theories provide
new perspectives on what it is we are in fact trying to
achieve when building intelligent robots, and how we
should get there.

1.1 Differences Between the Reactive
and Deliberative Views

The reactive view grew during the 1980 as a re-
action against classical artificial intelligence and
cognitive science, and was in many ways a step
back towards behavioristic ideas, (Braitenberg, 1986;
Brooks, 1986; Georgeff and Lansky, 1987; Maes,
1991). The early reactive trend argued strongly
against representations, but due to the obvious limi-
tations of such an attitude, later work within the reac-
tive field incorporate representations, but of a differ-
ent type than the ones typically found within deliber-
ating systems.

Deliberative architectures implement a domain
ontology, that is, a definition of what things that exist
in the world, but without a precise description of their
properties and interrelations, (Russell and Norvig,
1995). This corresponds to a reductionist perspective
also found within cognitive science and classical arti-
ficial intelligence.

Reactive systems are instead defined by a low-
level specification that corresponds to the inputs and
outputs of the system, referred to as the sensory-
motor space (Pfeifer and Scheier, 1997). I here
refer to a quite large variety of approaches, in-
cluding the subsumption architecture (Brooks, 1986;
Brooks, 1991b), behavior based systems (Mataric̀,
1997; Arkin, 1998; Nicolescu, 2003) and sensory-
motor coordination (Pfeifer and Scheier, 2001; II and
Campbell, 2003; Bovet and Pfeifer, 2005). Without
claiming that all these approaches are one and the
same, I use the term reactive as a common notion for
these approaches proposing an embodied and holistic
view.

The low-level specification defines the sensory-
motor space as an entity which is related to the ex-
ternal world via a physical sensor or actuator on the
robot. For a simple robot with eight proximity sen-
sors and two independently controlled wheels, the
sensory-motor space is ten-dimensional where each
dimension corresponds to one sensor or motor. Many
sensors provide multi-dimensional data. For example,
a camera with a resolution of 100x100 pixels would

increase the sensory-motor space with 10 000 new
dimensions, where each pixel in the camera image
corresponds to one dimension in the sensory-motor
space. Cameras and other complex sensors could also
be viewed as providing a single, complex, dimen-
sion in the sensory-motor space, but the amount of
pre-processing or interpretation of data is always very
limited in a low-level specification implement.

Pfeifer and Scheier (Pfeifer and Scheier, 1997)
point out that a system using a low-level specifica-
tion has a much larger input space than deliberative
systems specified by a domain ontology, which also
allows much greater complexity. Another interesting
difference lies in information content. On the one
hand, each dimension in the input space of a delib-
erative system is fairly informative. It could be the
horizontal position of the robot on a map or the height
of an object in front of the robot. On the other hand,
most dimensions in the sensory-motor space are es-
sentially meaningless if not viewed in the context of
other dimensions. A single pixel in an image says
very little about the content of the scene when that
pixel is viewed alone, but in the context of the other
pixels, it may be very informative. One could easily
argue that such a large and complex sensory-motor
space is the result of an ill chosen representation.
With no doubt it is much easier to create readable
representations using a deliberative approach, where
sensor data have been processed so that it much better
reflects our own understanding of what is going on.

Even though this criticism is correct and impor-
tant, the sensory-motor space should not be under-
stood as an unprocessed version of objects and other
aspects in the world, but the representation of some-
thing else. The original argument against represen-
tations found in early reactive research has the last
decade been replaced with a more accepting attitude
towards representations, but representations of behav-
ior rather than representations of the world. Accord-
ing to Pfeifer and Scheier, many things can be solved
in a much simpler and more robust way without the
use of high-level percepts. In general, the sensory-
motor space appears to be a more suitable frame for
representations than the kind of world models found
in classical AI. (Pfeifer and Scheier, 1997; Pfeifer and
Scheier, 2001; Dawson, 2002)

Low-level specifications have the great advantage
that each dimension in the sensory-motor space is di-
rectly mapped to the corresponding sensors or motors,
while the inputs to a deliberative system, such as posi-
tion and size of objects, are often very hard to acquire.
By assuming the necessity of high-level percepts we
impose our own frame of reference upon the agent.
Our notions of objects and states in the world are for

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

374

36

sure handy when reflecting upon an agent’s behav-
ior, but may not be necessary, or even desirable, when
performing the same acts.

The principle of the frame of reference may be il-
lustrated through the parable with the ant, presented
by Herbert A. Simon, (Simon, 1969). Imagine an ant
making its way over the beach, and that the way it
chose was traced. When observing all the twists and
turns the ant made, one may be tempted to infer a
fairly complex internal navigation process. However,
the complexity of the path may not be the result of
the complexity of the ant, but the result of interac-
tion between a relatively simple control system, and a
complex environment.

Long before Brooks presented his ideas on reac-
tive robotics (Brooks, 1986; Brooks, 1990; Brooks,
1991b), it was shown that complex behavior could
emerge from simple systems, for example through the
Homeostat (Ashby, 1960) and Machina speculatrix
(Walter, 1963). Furthermore, Braitenberg’s Vehicles
(Braitenberg, 1986) was one of the most important in-
spiration sources for Brooks’s work.

This discussion constitutes a central part of the
criticism against deliberative systems and the motiva-
tion for a reactive approach. However, since reactive
systems do not define any ontology with meaning-
ful inputs, many types of, typically sequential tasks,
are very hard to represent in this manner. Even
though several examples of reactive systems show-
ing deliberative-like behaviors exist, for example Toto
(Mataric̀, 1992) and the reactive categorization robot
by Pfeifer and Scheier (Pfeifer and Scheier, 1997),
both the systems and the task they solve are typically
handcrafted, making them appear more as cute exam-
ples of clever design than solutions to a real problem.

The difference between reactive and deliberative
systems has been described as the amount of compu-
tation performed at run-time, (Mataric̀, 1997). A reac-
tive control system can be derived from a planner, by
computing all possible plans off-line beforehand, and
in this way create a universal plan (Schoppers, 1987).

This argument about on-line computation beauti-
fully points out how similar the two approaches of re-
active and deliberative control may be. Still, when
proposing the reactive approach, Rodney Brooks
pointed out a number of behavioral differences to
classical deliberative systems: “robots should be sim-
ple in nature but flexible in behavior, capable of act-
ing autonomously over long periods of time in uncer-
tain, noisy, realistic, and changing worlds”, (Brooks,
1986). So if a reactive controller is merely a pre-
computed plan, why these differences in behavior?

One critical issue is speed. Brooks often points
out the importance of real-time response and that the

cheap design of reactive systems allows much faster
connections between sensors and actuators than the
deliberative planners, (Brooks, 1990). Even though
this was an important point in the early nineties, the
last years’ increase in computational power allows
continuous re-planning within a reactive time frame,
(Dawson, 2002).

Another reason may be that reactive controllers
are typically not derived from planners. Rather, reac-
tive controllers are handcrafted solutions specialized
for a certain type of robot. Achieving a specific com-
plex behavior in a reactive manner can be a challenge,
which may be one important reason for the limited
success of reactive systems in solving more complex,
sequential tasks (Nicolescu, 2003). Taking Matarić’s
point about run-time computation into account, the re-
active approach still does not propose a clear way to
achieve a desired controller; it only shows that the de-
liberative part can be removed when intelligence has
been compiled into reactive decision rules.

Hybrid systems do obstacle avoidance using reac-
tive controllers not because re-planning is computa-
tionally heavy, but because re-planning is difficult to
implement. Even though one could imagine a plan-
ner generating exactly the same behavior as one of
Braitenberg’s vehicles avoiding obstacles, the struc-
ture of such a planner would probably be much more
complicated than the corresponding controller formu-
lated in reactive terms. This may in fact, at least
from an engineer’s point of view, be the most suit-
able distinction between the reactive and deliberative
perspectives. It appears that behaviors like obstacle
avoidance and corridor following is easily formulated
in reactive terms, while selecting a suitable path from
a known map is better formulated using a planner.
Other things, actually most things, are too hard to
manually design using any of these two approaches.

1.2 Emergence of Behavior

As mentioned in the previous section, supporters of
the reactive approach freely admit that the implemen-
tation of high-level deliberative-like skills in reactive
systems is very difficult, (Pfeifer and Scheier, 2001;
Nicolescu, 2003). The route to success is often said
to be emergence, (Maes, 1990; Mataric̀, 1997; Pfeifer
and Scheier, 1997). But what exactly does this mean?

The term emergent is commonly described as
something that is more than the sum of its parts, but
apart from that it is in fact hard to arrive at a defini-
tion suitable for all uses of the term, (Corning, 2002).
Within the field of intelligent robotics, emergence is
used to point out that a robot’s behavior is not explic-
itly defined in the controller, but something that ap-

COGNITIVE PERSPECTIVES ON ROBOT BEHAVIOR

375

37

pears in the interaction between the robot and its en-
vironment. Pfeifer and Scheier (Pfeifer and Scheier,
2001) proposes a number of design principles for au-
tonomous robots. The critical points are shortly sum-
marized below.

1. Behavior should emerge out of a large number of
parallel, loosely coupled processes.

2. Intelligence is to be conceived as sensory-motor
coordination, i.e., the sensory-motor space serves
as a structure for all representations, including the
categorization and memory.

3. The system should employ a cheap design and ex-
ploit the physics of its ecological niche.

4. The system must be redundant.

5. The system should employ the principles of self-
organization.

Not surprisingly, those principles are well aligned
with those found in literature discussing emergence,
(Corning, 2002; Flake, 1998). Consequently, mod-
ern reactive architectures should constitute a good
approach for design of systems showing emergent
properties, but this is yet far from a unified theory
on which robotics architectures could be built, (Hey-
lighen et al., 2004). Before a theory of emergent be-
havior could actually be used, much more has to be
understood about the theoretical properties of emer-
gence, but such an analysis is seldom found in robotic
literature.

1.3 Criticism Against the Hybrid View

After looking a bit closer at the principles of the reac-
tive and deliberative approaches, the philosophy be-
hind hybrid approaches seems to be much closer to
the latter. Hybrid systems clearly align to a reduction-
ist view, enforcing the importance of system modular-
ity and hierarchical structures. The promoters of hy-
brid systems motivate this design effort in completely
different ways than the supporters of reactive systems
argue for a holistic perspective. Obviously, from an
engineering perspective, it is very important to be able
to build larger systems in some kind of modules, so
that each part can be tested and refined separately.
While this strongly contradicts the holistic perspec-
tive, reactive supporters have no solution to, and are
generally not interested in, these issues.

So what exactly are the problems with combining
the reactive in the small, and deliberative in the large?
Since the hybrid approach is so wide and generally
friendly towards anything that works, it is hard to ac-
tually say something about these systems which truly
applies to all of them. Still, some common criticism

has been raised against the hierarchical approach, es-
pecially from the field of embodied cognitive science.
The core issues are summarized bellow.

• Even though hybrid systems adopt an embod-
ied view for interaction with the world, they still de-
fine a domain ontology and are consequently bound
by the limitations of this approach. One critical point
of the reactive approach is that no concepts or sym-
bols should be pre-defined. This point is lost when
hybrid systems use reactivity as an interface to the
world rather than the source of intelligence. (Pfeifer
and Scheier, 2001)

• The kind of information produced by the reac-
tive layer in a hierarchical system is often fundamen-
tally different from that required by the deliberative
subsystems, making it hard to design suitable interac-
tion between the two layers. For this reason, the sens-
ing part in the deliberative layer is often designed in a
non-reactive way, reintroducing the problem of how
objects, and concepts in general, should be recog-
nized in complex and noisy data. (Pfeifer and Scheier,
2001; Dawson, 2002)

• While a critical aspect of modularity is to be able
to test and control the function of each module before
inserting it in the complete system, one important goal
of reactive approaches is to achieve emergent proper-
ties which by definition do not appear in the modules
alone. Even though hybrid systems successfully em-
ploy simpler reactive behavior, they do not leave room
for emergent properties. (Pfeifer and Scheier, 2001;
Brugali and Salvaneschi, 2006)

2 AN EXTENDED PERSPECTIVE

The fundamental differences between modern ap-
proaches within intelligent robotics have now been
outlined. The rest of this paper present a number of
different views on cognition, and apply them in a con-
text of intelligent robotics. These views will make
deliberative and reactive perspectives appear less like
the two extremes, and more like one dimension within
the multi-dimensional study of cognition and behav-
ior.

Cognitive science has received significant
amounts of criticism for its undivided focus on the
individual, where a proper analysis of the social
aspects of interaction is missing, (Greeno, 1993;
Heylighen et al., 2004; Hutchins, 1995; Suchman,
1987). Similar criticism has been raised towards
classical AI and deliberative robotics, but to some
extent it also applies to reactive systems. Both
deliberative and reactive approaches share a view of
the single agent as one conceived unit, interacting

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

376

38

with the outside world through input and output
interfaces. Even though this might seam like a safe
assumption for many systems like humans, animals,
computers and robots, I will in this chapter present
a couple of theories where the object of analysis is
changed to incorporate fundamentally different types
of cognitive systems. As will be illustrated, many
aspects of these systems are strikingly similar to the
architectures proposed within robotics.

2.1 The Extended Mind

Clark and Chalmers (Clark and Chalmers, 1998) de-
scribe two people, Inga and Otto, who are both going
to visit the Museum of Modern Art which lies in the
53rd street. Inga heard from a friend that there is an
exhibition at the Museum of Modern Art and she de-
cides to go there. She looks up the address and re-
members it. She forms the belief that the Museum
of Modern Art is on 53rd street. But now consider
Otto who has Alzheimer’s disease and instead of re-
membering the address writes it down in his note-
book. Clark and Chalmers argue that Inga and Otto
in principle have the same belief, even though parts
of Otto’s belief in a very strong sense are outside his
body. This is an example of the extended mind.

Interestingly, Otto’s behavior may easily be de-
scribed in reactive terms. Otto changes the environ-
ment, his notebook, in a manner which later will lead
him to the correct address. In contrast, Inga’s behav-
ior is a classical example which can’t be described
within a purely reactive architecture. Still, Clark and
Chalmers point out that Otto’s and Inga’s cognitive
processes are essentially the same. I would argue that
the reason why we usually view Inga’s and Otto’s
cognitive processes as quite different is our usual con-
cept of an individual. If we chose to view the per-
son as an entity enclosed by the skin, the use of a
notebook as memory is very different from the use
of nerve structures for the same purpose. But, if
we instead follow Clark and Chalmers’ argument and
widen our notion of a person to include the notebook,
the two types of memory appear very similar.

This point could also be illustrated by a computer.
What exactly is a computer? Most people would
probably say that it’s the screen, the key-board and
mouse, and of course the box on the floor which you
connect all the cables to. If one uses a Memory Stick
to store things on, that is not a part of the computer,
but a different object. Still, technically speaking, the
Memory Stick, when connected, is very similar to the
hard drive within the computer. The Memory Stick
might, just as Otto’s notebook, have lower storage ca-
pacity, a bit slower access speed, and not always be

available. Still, it fills the same function as the in-
ternal memory. Admittedly, our common notion of a
person, where the notebook is not included, is very
convenient, but we should be aware that it is merely a
convention.

This discussion opens up the notion of an agent.
We choose to see one agent as separated from its en-
vironment not because it is different from the environ-
ment, but because it, from our perspective, is conve-
nient to view it like that. This does not imply that the
notion of agents and objects is totally arbitrary, but
neither is it totally predefined.

I mentioned earlier Pfeifer and Scheier’s notion of
frame of reference, pointing out that an agent’s behav-
ior is always seen from an observer’s perspective. The
view presented here takes one step further by saying
that even the notion of agent is dependent of the ob-
server. This distinction is important since Pfeifer and
Scheier strongly argue towards representations within
a sensory-motor space. If the agent is an entity cre-
ated by the observer, so are sensors and motors, and
with these, the sensory-motor space.

Following this discussion, the notion of an agent
should be able to divide into smaller, sub-agents, with
different sensors and motors. The functions of these
sub-agents may differ drastically from the function of
the combined agent, just like Otto and his notebook
can do more things together, than neither of them can
do separately. Consequently, the question of how be-
havior is represented is transformed into how Otto
figures out that he should use a notebook? Or more
generally: How does purposeful emergent behavior
among agents appear?

2.2 A Universe of Possibilities

One of the inspiration sources to Clark and Chalmers’
work came from distributed cognition, (Hutchins,
1995). Hutchins points out the importance of viewing
cognitive processes as something that goes on both in
the environment and within the individual, but in con-
trast to Clark and Chalmers, Hutchins’ focus lies on
group level dynamics. In this context, the agent, or
the cognitive system, is expanded not only to incor-
porate one person and his tools, but many people and
artifacts in cooperation.

Hutchins takes a few steps further than Clark and
Chalmers by not only proposing an extended view, but
also using it to analyze systems. Distributed cogni-
tion has been applied to many systems, including ship
navigation (Hutchins, 1995), human-computer inter-
action (Hollan et al., 2000), various aspects of air-
plane control (Hutchins and Klausen, 1996; Hutchins
and Holder, 2000; Hutchins et al., 2002) and more re-

COGNITIVE PERSPECTIVES ON ROBOT BEHAVIOR

377

39

cently clinical systems (Galliers et al., 2006). While
distributed cognition as used in these examples have
no apparent application to robotics, the result of this
research might still shed some light on what we want
to achieve when designing for purposeful emergent
behavior.

From a deliberative perspective, a large and diffi-
cult problem is to recognize objects and their proper-
ties in complex and noisy data. From a reactive view,
the same problem is instead described as how to arrive
with suitable emergent properties. And finally, form
the perspective of distributed cognition, this problem
is strongly related to the formation of interpretations
within a group. Hutchins investigates the properties
of interpretation formation on group level using con-
straint satisfaction networks, (Hutchins, 1995). The
weights of the networks were arranged so that each
network could arrive at only two stable states, or in-
terpretations. One interpretation corresponds to the
activation pattern 111000 while the other interpreta-
tion corresponds to 000111, see Figure 1.

Figure 1: Constraint satisfaction network, (Hutchins, 1995,
p. 244). Black and gray lines represent positive and nega-
tive connections, respectively. Strong activation in left side
nodes will consequently inhibit activation in nodes to the
right, and the other way, driving the network towards one of
two stable states. Republished with permission.

The initial activation of the nodes is here viewed
as confirmation bias. When the network is executed
alone, it will always arrive with the interpretation
closest to its initial state. However, when the net-
works are connected so that the activity of some nodes
propagates to other nodes of a different network, their
decision properties change due to interaction between
the networks. As Hutchins puts it, this illustrates how
interpretation of information changes due to the orga-
nization of the group. In a robotics context, this might
be applied as having several reactive controllers cre-
ating a virtual “environment” for each other. More

specifically, controllers do not only take input from
sensors and send commands to actuators, but might
also sense and act upon other controllers, drastically
increasing the complexity of the system as a whole.
The organization of such a system should be similar
to the organizational properties of a group.

Hutchins shows that having this kind of organi-
zation, where multiple connected agents try to make
their individual interpretations, produces a system
that efficiently explores interpretation space. Further-
more, even after reaching a common interpretation,
such a system is much more likely to re-evaluate the
interpretation in case of new evidence. However, in
case of too much interaction within the group, inter-
pretation space is not explored properly. In contrast,
too little interaction will result in that no single inter-
pretation is achieved. Hutchins calls this the funda-
mental tradeoff in cognitive ecology.

This discussion is not only interesting as analysis
of group behavior, but also as a way to understand in-
terpretations within the individual. Here, the process
of transforming sensor data into symbols with mean-
ing is replaced with a continuous constraint satisfac-
tion between sensors, actuators and internal states.
In this view, we do not perceive what is in the en-
vironment; instead we are striving towards the clos-
est stable state, pushed in one direction or another by
changes in the environment.

There are mainly two advantages with this model
of cognition, compared to the classical view of in-
formation processing. First, the interpretation always
arrives from the current state of the system. Conse-
quently, each interpretation is based on much more
information than when sensor data is seen as a se-
ries of discrete readings which should be understood
more or less separately. Secondly, when the notion of
symbols is replaced with that of attractors, the number
and meaning of these entities can be changed dynam-
ically. This opens up the possibility for a solution to
one key problem of deliberative processing; the cre-
ation of new symbols.

This view of cognition as the propagation of repre-
sentational states across representational media might
provide a new and powerful tool for understanding
interpretation and decision making also in robots.
However, even though Hutchins provides an extensive
analysis of several existing distributed systems, a gen-
eral understanding of how such a system appears and
develops is still missing, (Heylighen et al., 2004).

2.3 Situated Action

When studying interactions between people, the anal-
ysis of language becomes one critical sub field. Clas-

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

378

40

sical cognitive science literature describes language
as “a system that uses some physical signal (a sound, a
gesture, a mark on paper) to express meaning”, (Still-
ings et al., 1995). In other words, language is viewed
as a communication channel where some meaning,
i.e. an internal representation, is encoded into a phys-
ical signal using some grammar and then decoded
by the listener into a similar internal representation.
However intuitive this view may appear, it is not the
only one. A fundamentally different perspective was
presented in late eighties by Lucy A. Suchman under
the name situated action, (Suchman, 1987).
Suchman’s claim is that the traditional view of lan-
guage includes several fundamental problems. One
of the most important issues is the discussion around
shared knowledge. If the cognitive view of language
is correct, a speaker must not only encode the repre-
sentation into words, but also take into account what
the listener already knows. As Suchman puts it, this
is equivalent with having a body of shared knowledge
that we assume all individuals within our society to
have. When speaking, only the specifics of the inter-
nal representation are transformed into words, leaving
out everything covered by the shared knowledge.
To exemplify the problem, Suchman uses the re-
sult from an exercise assigned by Harold Garfinkel,
(Suchman, 1987). Students were asked to write down
a description of a simple conversation. On the left
hand side of the paper the students should write what
was said, and on the right hand side what they un-
derstood from the conversation. While the first part
of the assignment was of course easy, the second part
seemed to grow without limit. Many students asked
how much they were supposed to write, and when
Garfinkel imposed accuracy, clarity and distinctness
the students finally gave up with the complaint that
the task was impossible. The point here is not that the
body of shared knowledge is too large to write down
on a paper, but that the task resulted in a continually
growing horizon of understandings to be accounted
for.
The assignment, it turned out, was not to describe
some existing content, but to generate it. As such, it
is an endless task. The students’ failure suggests not
that they gave up too soon, but that what they were as-
signed to do was not what the participants in the con-
versation themselves did in order to achieve shared
understanding. (Suchman, 1987).
Even though there might be several other ways to ex-
plain the result from Garfinkel’s assignment, Such-
man’s point is striking. If knowledge is not pre-
existing to language as much as it is generated by it,
it puts our understanding of internal representations
in a fundamentally different light. The meaning of a

spoken phrase does not appear to exist in any stronger
sense than obstacles exists for one of Braitenberg’s
vehicles.

Situated action is not at all limited to analysis of
language. In fact, situated action tries to unify all
kinds of behavior where language is seen as a very
specialized sub field. In such a view, spoken words
has the same relation to semantics as an agent’s ac-
tions has to intentions. However, it should be remem-
bered that Suchman’s work is presented as a theory
of human-computer interaction rather than a theory
of behavior or intelligence.

If language and other complex behavior do not be-
gin with an internal representation or intent, how is it
produced? The view proposed by Suchman begins
in the context of the agent: “every course of action
depends in essential ways upon its material and so-
cial circumstances,” (Suchman, 1987). The circum-
stances or situation of actions can, at least in a con-
text of intelligibility, be defined as “the full range of
resources that the actor has available to convey the
significance of his or her own actions, and to interpret
the actions of others,” (Suchman, 1987). This could
be interpreted as if the world is understood in terms
of actions. The fact that we know how to walk makes
us really good at recognizing such behavior. In the
domain of human-computer interaction, the same ar-
gument implies that our understanding of a computer
is represented in terms of what we can do with it, not
as a structural model of the computer as such. As a
consequence, a selection of the best path towards a
desired goal is not dependent on a representation of
roads, but on the availability of the actions for turning
left or right.

Furthermore, the goal of situated action is not rep-
resented in any other way than as preferences to some
actions given a specific situation. Our common under-
standing of plans and goals is in this context nothing
but a way to reflect on past events. As Suchman points
out, a declaration of intent generally says very little
about the precise actions to follow, it is the obscurity
of plans that makes them so useful for everyday com-
munication (Suchman, 1987).

This discussion puts not only notions of inten-
tions and plans in a secondary position, but conscious
thoughts in general appear to be less the driving force
behind action than an artifact of our reasoning about
action. Seen in the robotics context, deliberative pro-
cesses should in a very strict sense be emerging from
lower levels of interaction, not something predefined
that supervises the lower levels.

One interesting implication of these theories is
that observed sensor data bears a very loose connec-
tion to its semantic content. The interpretation is cre-

COGNITIVE PERSPECTIVES ON ROBOT BEHAVIOR

379

41

ated by the observer in interaction with the data rather
than extracted from the observed data. The creation
of an interpretation is in this view more about gener-
ating information, than processing it.

3 DEVELOPMENT AND DESIGN

The theories presented above depict a perspective of
intelligence where cognitive ability emerges out of in-
teractions between multiple parts of an agent. The
agent is very loosely defined as a cognitive system,
i.e., a large number of physically and/or socially dis-
tributed entities which interact and in this way achieve
something more than any of them could do alone.
More explicitly, intelligent behavior of a cognitive
system is produced from entities which are totally un-
aware of the dynamics of that system as a whole.

In such a view, elements in the world are never
explicitly represented, but appear in terms of possi-
bilities for situated actions. Information does not flow
from inputs to outputs, but back and forth through nu-
merous representational states, coordinating sensors
and actuators rather than controlling them. The mean-
ing of actions, symbols or data in general is achieved
through interaction among elements, not given by a
grammar. Conscious processes are not the fundamen-
tal foundation for intelligent behavior, but its funda-
mental phenomenon. The question still remaining is:
How does one create a system based on the principles
presented above?

3.1 Evolution of Self-organization

Emergent properties which in the previous discussion
so gracefully are said to explain intelligence do, from
an engineering perspective, often cause more prob-
lems than they solve. What is seldom mentioned is
that guidelines like those presented by Pfeifer and
Scheier, (Pfeifer and Scheier, 2001) only address
half the question of emergent behavior. We are nor-
mally not interested in just any emergent behavior, but
specifically in those emergent effects which fulfill the
task for which the robot is designed. This may prove
to be much more difficult to achieve than just emer-
gence in general.

There are a number of theories approaching this
problem. The most frequently mentioned within
robotics is self organization. The principle of self or-
ganization means that the system spontaneously de-
velops functional structure through numerous interac-
tions between its parts. The basic mechanism behind
this structure is mutual benefit, symbiosis. Parts in
the system will continue to rearrange until both find a

relative state which is satisfactory. A frequently used
interaction pathway will grow stronger while rarely
used pathways will weaken or disappear. The mech-
anisms controlling what is satisfactory will as a con-
sequence have direct influence on the emergent prop-
erties of the system as a whole. (Heylighen and Ger-
shenson, 2003)

While the principle of self-organization provides a
clearer understanding of the mechanisms controlling
emergence, it still does not explain how useful behav-
ior emerges. The fact that favorable interactions are
reinforced on the micro level will certainly not lead
directly to favorable behavior on the macro level.

For natural systems the obvious answer is evolu-
tion. The fundamental mechanism of natural selection
will, given enough time, lead to a solution. However,
this gives us little hope for training robots. The prob-
lem space for a robot acting in the real world grows
extremely fast. Allowing a robot to try out a pop-
ulation of randomly chosen behaviors will, even for
very simple problems, most likely never lead to a so-
lution. Consequently, the evolutionary process won’t
work since nothing can be reinforced.

Interestingly, a robot acting in the real world is,
by definition, in the same situation as many biologi-
cal systems, which obviously have evolved. The dis-
cussion above makes an evolutionary explanation to
the problem of grabbing and moving objects appear
highly unlikely. Even when including the billions of
years preceding the human era, the chance of com-
bining all the biological structures required for object
manipulation to work appears very small. And yet
evolution has given us a wonderful tool in the form
of the hand, and the neural structures underlying its
control.

The explanation for our highly flexible and dex-
terous ability to manipulate objects is of course that it
did not evolve from nothing. As such, the human hand
is not an optimal solution, nor is it anything close to
optimal. Instead is it a result of what came before it.
Small incremental changes of the mammal front legs,
which at each stage were reinforced through natural
selection, have eventually led to the human arm and
hand. (Wolfram, 2002)

Why this divergent discussion about evolution?
The manipulator of a robot has to be designed. We
are simply interested in teaching the robot to use it,
given a fairly short period of time. The point of this
sidestep into evolution is that the physical shape of the
human hand did not evolve alone, but together with
the neural system controlling it. The human child is
born with a large amount of basic reflexes, which are
all fairly simple. In robotic terms, we would proba-
bly call them purely reactive behaviors. (Thelen and

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

380

42

Bates, 2003; Grupen, 2006)
Some of these innate behaviors are certainly crit-

ical for the survival of the infant, such as the grip re-
flex or the sucking reflex. But many other reflexes
do not have an obvious purpose, such as the asym-
metric tonic neck reflex, landau reflex or the galant
reflex, (Grupen, 2006). Instead, reflexes like these
seem to play a key role for learning. As mentioned
above, the child is born with a set of reflexes. These
basic reflexes are, during the first four years, grad-
ually replaced by new, more complicated behaviors.
The child seams to learn through an evolutionary pro-
cess of behavioral development. New behaviors ap-
pear as a modification or combination of more basic
behaviors, while other behaviors disappear. In theo-
retical terms, this incremental development allows the
problem space to remain small even as the problems
grow more complicated. The full space of possible
solutions to the problem is never searched, but only
the parts covered by previous knowledge. Sometimes,
the small changes to the underlying control structure
result in drastic changes in behavior, which we see
in the child as the establishment of new behaviors.
This kind of incremental development process should
favor robust behavior rather than optimal. A behav-
ior which succeeds under many circumstances sim-
ply has much greater chance of survival than a perfect
solution only succeeding under very special circum-
stances.

4 CONCLUSIONS

Through out this review there has been a theme of
emergent behavior. Notions of objects in the world,
goals and concepts in general are said to emerge out
of simpler parts. The literature reviewed here fre-
quently points out several aspects critical for a sys-
tem to show emergent properties. However, it has
been much harder to find clear theories of how to con-
trol these emergent properties. In fact, one important
property of emergence seems to be that it can not be
controlled in a supervising way. Without a proper the-
ory of how to arrive at useful emergent properties, the
argument that behavior should emerge is very much
like saying that we do not know. It is generally admit-
ted that distributed and emergent control systems for
robots are very hard both to obtain and control. As
such, these approaches do not seem less problematic
than their counterparts within classical AI.

Nevertheless, the concepts presented in this re-
view open a new frame for representation of behavior.
A troubling and yet thrilling aspect of these theories is
that they span over an enormous theoretical horizon.

Some fundamental problems are solved, many new
are introduced, but just viewing the problem from a
different perspective might get us closer to a general
understanding: An understanding of what intelligence
is and how it can be created.

ACKNOWLEDGEMENTS

I thank Lars-Erik Janlert and Thomas Hellström at the
Department of Computing Science, Umeå University
for valuable input to this work.

REFERENCES

Arkin, R. C. (1998). Behaviour-Based Robotics. MIT Press.

Ashby, R. (1960). Design for a brain; the origin of adaptive
behavior. Wiley, New York.

Bovet, S. and Pfeifer, R. (2005). Emergence of coherent be-
haviors from homogenous sensorimotor coupling. In
12th International Conference on Advanced Robotics,
pages 324 – 330.

Braitenberg, V. (1986). Vehicles - Experiments in Synthetic
Psychology. The MIT Press.

Brooks, R. A. (1986). A robust layered control system for
a mobile robot. In IEEE Journal of Robotics and Au-
tomation RA-2, volume 1, pages 14–23.

Brooks, R. A. (1990). Elephants don’t play chess. Robotics
and Autonomous Systems, 6:3–15.

Brooks, R. A. (1991a). Intelligence without reason. Pro-
ceedings, 1991 Int. Joint Conf. on Artificial Intelli-
gence, pages 569–595.

Brooks, R. A. (1991b). New approaches to robotics. Sci-
ence, 253(13):1227–1232.

Brugali, D. and Salvaneschi, P. (2006). Stable aspects in
robot software development. International Journal of
Advanced Robotic Systems, 3(1).

Clark, A. and Chalmers, D. J. (1998). The extended mind.
Analysis, 58:10–23.

Corning, P. A. (2002). A venerable concept in search of a
theory. Complexity, 7(6):18–30.

Dawson, M. R. W. (2002). From embodied cognitive sci-
ence to synthetic psychology. In Proceedings of the
First IEEE International Conference on Cognitive In-
formatics (ICCI’02).

Doherty, P., Haslum, P., Heintz, F., Merz, T., and Persson,
T. (2004). A distributed architecture for autonomous
unmanned aerial vehicle experimentation. In Pro-
ceedings of the 7th International Symposium on Dis-
tributed Autonomous Systems.

Flake, G. W. (1998). The Computational Beauty of Nature.
MIT Press, Cambridge, Massachusetts.

COGNITIVE PERSPECTIVES ON ROBOT BEHAVIOR

381

43

Galliers, J., Wilson, S., and Fone, J. (2006). A method for
determining information flow breakdown in clinical
systems. Special issue of the International Journal
of Medical Informatics.

Georgeff, M. P. and Lansky, A. L. (1987). Reactive reason-
ing and planning. In AAAI, pages 677–682.

Gowdy, J. (2000). Emergent Architecture: A Case Study
for Outdoor Mobile Robots. PhD thesis, The Robotics
Institute. Carnegie, Carnegie Mellon University.

Greeno, J. G. (1993). Special issue on situated action. In
Cognitive Science, volume 17, pages 1–147. Ablex
Publishing Corporation, Norwood, New Jersey.

Grupen, R. (2006). The developmental organization of
robot behavior. Oral presentation during the 6th In-
ternational UJI Robotics School.

Heylighen, F. and Gershenson, C. (2003). The meaning of
self-organization in computing. In IEEE Intelligent
Systems.

Heylighen, F., Heath, M., and Overwalle, F. V. (2004).
The emergence of distributed cognition: a concep-
tual framework. In Collective Intentionality IV, Siena,
Italy.

Hollan, J., Hutchins, E., and Kirsh, D. (2000). Distributed
cognition: toward a new foundation for human-
computer interaction research. ACM Trans. Comput.-
Hum. Interact., 7(2):174–196.

Hutchins, E. (1995). Cognition in the Wild. MIT Press,
Cambridge, Massachusetts.

Hutchins, E., E, B., Holder, R., and P, A. (2002). Culture
and flight deck operations. Prepared for the Boeing
Company.

Hutchins, E. and Holder, B. (2000). Conceptual models for
understanding an encounter with a mountain wave. In
HCI-Aero 2000, Toulouse, France.

Hutchins, E. and Klausen, T. (1996). Distributed cognition
in an airline cockpit. Cognition and communication
at work. Y. E. a. D. Middleton. New York, Cambridge
University Press, pages 15–34.

II, R. A. P. and Campbell, C. L. (2003). Robonaut task
learning through teleoperation. In Proceedings of the
2003 IEEE, International Conference on Robotics and
Automation, pages 23–27, Taipei, Taiwan.

Kaiser, M. and Dillmann, R. (1996). Building elementary
robot skills from human demonstration. International
Symposium on Intelligent Robotics Systems, 3:2700–
2705.

Maes, P. (1990). Situated agents can have goals. Robotics
and Autonomous Systems, 6:49–70.

Maes, P., editor (1991). Designing Autonomous Agents.
MIT Press, Elsevier.

Mataric̀, M. J. (1992). Integration of representation into
Goal-Driven Behavior-Based robots. In IEEE Trans-
actions on Robotics and Automation, volume 8, pages
304–312.

Mataric̀, M. J. (1997). Behavior-Based control: Examples
from navigation, learning, and group behavior. Jour-
nal of Experimental and Theoretical Artificial Intelli-
gence, 9(2–3):323–336.

Murphy, R. R. (2000). Introduction to AI Robotics. MIT
Press, Cambridge, Massachusetts.

Nicolescu, M. (2003). A Framework for Learning
from Demonstration, Generalization and Practice in
Human-Robot Domains. PhD thesis, University of
Southern California.

Pfeifer, R. and Scheier, C. (1997). Sensory-motor coordi-
nation: the metaphor and beyond. Robotics and Au-
tonomous Systems, 20(2):157–178.

Pfeifer, R. and Scheier, C. (2001). Understanding Intelli-
gence. MIT Press. Cambrage, Massachusetts.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A
Modern Approach. Prentice Hall, NJ.

Schoppers, M. (1987). Universal plans for reactive robots
in unpredictable demains. In IJCAI-87:, pages 1039–
1046.

Shea, C. H. and Wulf, G. (1995). Schema theory - a critical
appraisal and reevaluation. Journal of Motor Behav-
ior.

Simon, H. A. (1969). The Sciences of the Artificial. MIT
Press, Cambridge, Massachusetts.

Stillings, N. A., Weisler, S. E., Chase, C. H., Feinstein,
M. H., Garfield, J. L., and Rissland, E. L. (1995). Cog-
nitive Science. MIT Press, Cambridge, Massachusetts.

Suchman, L. A. (1987). Plans and Situated Actions. PhD
thesis, Intelligent Systems Laboratory, Xerox Palo
Alto Research Center, USA.

Thelen, E. and Bates, E. (2003). Connectionism and dy-
namic systems: Are they really different? Develop-
mental Science, 6(4):378–391.

Walter, W. (1963). The Living Brain. Norton & Co., New
York.

Wolfram, S. (2002). A New Kind of Science. Wolfram Me-
dia, 1 edition.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

382

44

II

Paper II

Behavior Recognition for Segmentation of
Demonstrated Tasks∗

Erik Billing and Thomas Hellström

Dept. Computing Science, Umeå University, SE-901 87 Umeå, Sweden
billing@cs.umu.se, thomash@cs.umu.se

www.cs.umu.se/research/robotics

Abstract: One common approach to the robot learning technique Learning From
Demonstration, is to use a set of pre-programmed skills as building blocks for more
complex tasks. One important part of this approach is recognition of these skills
in a demonstration comprising a stream of sensor and actuator data. In this paper,
three novel techniques for behavior recognition are presented and compared. The first
technique is function-oriented and compares actions for similar inputs. The second
technique is based on auto-associative neural networks and compares reconstruction
errors in sensory-motor space. The third technique is based on S-Learning and com-
pares sequences of patterns in sensory-motor space. All three techniques compute an
activity level which can be seen as an alternative to a pure classification approach.
Performed tests show how the former approach allows a more informative interpreta-
tion of a demonstration, by not determining ”correct” behaviors but rather a number
of alternative interpretations.

Keywords: Learning from demonstration, Segmentation, Generalization, Sequence
Learning, Auto-associative neural networks, S-Learning.

∗ Copyright c© IEEE. All rights reserved. Reprinted, with permission, from 2008 IEEE SMC Interna-
tional Conference on Distributed Human-Machine Systems.

47

48

Behavior Recognition for Segmentation of
Demonstrated Tasks
Erik A. Billing Thomas Hellström

Department of Department of

Computing Science Computing Science

Umeå University Umeå University

Umeå, Sweden Umeå, Sweden

phone: +4690-7869915 phone: +4690-7867759

e-mail: billing@cs.umu.se e-mail: thomash@cs.umu.se

Abstract—One common approach to the robot learning tech-
nique Learning From Demonstration, is to use a set of pre-
programmed skills as building blocks for more complex tasks.
One important part of this approach is recognition of these
skills in a demonstration comprising a stream of sensor and
actuator data. In this paper, three novel techniques for behavior
recognition are presented and compared. The first technique is
function-oriented and compares actions for similar inputs. The
second technique is based on auto-associative neural networks
and compares reconstruction errors in sensory-motor space. The
third technique is based on S-Learning and compares sequences
of patterns in sensory-motor space. All three techniques compute
an activity level which can be seen as an alternative to a
pure classification approach. Performed tests show how the
former approach allows a more informative interpretation of
a demonstration, by not determining "correct" behaviors but
rather a number of alternative interpretations.

Index Terms—Learning from demonstration, Segmentation,
Generalization, Sequence Learning, Auto-associative neural net-
works, S-Learning.

I. INTRODUCTION

A lot of research in Learning from Demonstration (LFD)

deals with the problem of generating behaviors from data

recorded during manual demonstrations. Behaviors are in this

case direct mappings from sensor states to action states, where

actions typically are low-level motor commands [12], [8].

This both challenging and interesting research has natural

limitations in many real-world applications. A key problem is

generalization, i.e. the robot´s ability to repeat a demonstrated

behavior under conditions not identical to those present during

the demonstration. One common way to overcome this is to

transform the demonstration into a set of pre-programmed

higher-level actions, called sub-tasks [20], motion primitives

[23], motor primitives [1] or motor skills [18].

Most works in LFD deal with tasks such as robot arm

motion, pole balancing, and robot gait, e.g., [2], [13], [4],

and the higher-level actions are often short sequences of low-

level motor commands. One of the few examples of LFD

with complex high-level behaviors is the work presented by

Nicolescu and Mataric´ [16], [15], [10]. The work presented

in this paper uses similar types of higher-level skills. For this

reason, we will adopt the terminology developed by Nicolescu

[16], where skills can be understood as a relatively simple

mapping from sensors to actuators, with an aptitude or ability

to achieve or maintain a goal. Several skills can be combined

to perform a task. A task, which has higher complexity than

skills, may involve serveral goals and is represented as a

sequence of skills.

The ability to represent a demonstration as a sequence

of skills does not only serve as support for generalization,

but is also a powerfull way to make the demonstrated data

understandable to a human user. A labeled sequence of skills,

for example, following the wall to my right, passing through

a door, going straight over the floor avoiding any obstacle, is

significantly easier to interprete than the raw sensor and motor

data. A demonstration represented in this way should give the

user a better understanding of what the robot did observe, and

the opportunity to evaluate the robot’s interpretation of the

demonstrated behavior.

As such, the generalization part of LFD is in this context

understood as describing a task-level demonstration in terms

of the previously learned, or pre-programmed skills. This

involves determining positions and characteristics of segmen-

tation points where the skills change, and identifying the skills

themselves. Identifying suitable parameters for parametrized

skills may also be part of this process, e.g., [15]. Consequently,

the result of performing LFD will be a task representation, i.e.,

a sequence of identified skills, together with a characterization

of the segmentation points. This paper addresses the specific

problem of determining positions for segmentation points and

the identification of previously learned skills for each segment.

However, the problem of determining the characteristics of

each segmentation point is not addressed, and will be subject

to future work.

Section 2 of our paper describes LFD and introduces a

basic notation. Section 3 presents three novel techniques for

behavior recognition. In Section 4, the test cases are described

and the test results are reported in Section 5. Related work is

reviewed in Section 6, and finally conclusions and ideas for

future research are given.

II. LEARNING FROM DEMONSTRATION

The basic principle of the learning technique Learning From

Demonstration (LFD) is that a robot should learn to repeat

228

IEEE SMC International Conference on Distributed Human-Machine Systems 2008

49

a behavior after being teleoperated through one or several

demonstrations performed by a human. Some key concepts

will be introduced in this section.

The robot represents its view of itself and of the environ-

ment at time t with a sensor vector xt comprising observed

sensor variables. Some variables represent exteroceptive phys-

ical sensors, such as infra-red distance sensors, ambient light

sensors, cameras, bump sensors, accelerometers, gyros, and

GPS. Other variables represent interoceptive sensors, such as

joint angles, wheel encoders, actual motor speed, and battery

state. Dynamics and time dependencies can be handled by

adding lagged variables, derivatives, or sub sequences to the

sensor vector. The robot affects the world and itself through its

effectors represented by the action vector yt. Typical actions

are motor speed and steering angle controlling propulsion, or

joint angles controlling the motion of a robot arm.

A behavior β can be represented by a function from a subset

of sensor vector space to a subset of action vector space. Thus,

the expression yt = β(xt) means that β suggests action yt

for a sensor vector xt. β is sometimes called “policy” or,

in the control systems community, “control law”. By adding

lagged state variables to the sensor vector, the behaviors can

be viewed as purely reactive while still being able to handle

dynamical models.

Often, no distinction between sensor data and actions is

made, and an event et is defined as

et = (xt, yt) . (1)

A demonstration θ is represented by a time series compris-

ing N such events:

θ = (e1, e2, ..., eN) . (2)

For each t, xt is the observed sensor vector and yt is the

action vector issued by the demonstrator. Hereby, β most often

denotes a relatively simple behavior with a single goal. In

these cases, β represents a skill, as defined in the introduction.

Common skills are avoid obstacles, follow wall or drive

towards goal.

III. METHODS FOR BEHAVIOR RECOGNITION

In the presented work, three methods for behavior recog-

nition are suggested and evaluated. Each method defines a

function fβ for each skill β, mapping a sequence of events

θ = {e1, e2, ..., eN} and a time index t in [1, . . . , N] to a a

real number representing the activity level αt ∈ [0, 1]:

αt = fβ (θ, t) . (3)

αt could, informally, be interpreted as the probability of β
controlling the robot at time t given the observations θ, i.e.:

αt ∼ P (β|θ) . (4)

If fβ for all β are computed for each time t, the activation

levels can be used both for positioning the segmentation points

and determining the most suitable skills for each segment.

The three suggested methods for behavior recognition are

described below, followed by two examples where the methods

are applied and evaluated.

A. β-Comparison

This method is based on the notion that two skills are equal

if they produce similar actions given the same sensor input.

fβ is defined as the distance between the action yt observed

in θ and the action produced by the specific β :

fβ(θ, t) = 1− d (β (xt) , yt) (5)

where d is a function computing a relevant distance measure

for action vectors in the specific application. d should reflect

the relevant difference between the two actions, and the

implementation of d is as such dependent on both the robot

and the behavior which is being learned. This is a limitation

compared to the other methods described in Section III-B and

III-C, which do not require any application-specific functions.

The precise implementation of d used in the present work is

described in Section IV.

B. AANN-Comparison

Autoassociative Neural Networks AANNs are regular feed-

forward neural networks with the same size of input and output

layers. The input and output parts of the training data are

identical, such that the net learns to map input values onto

the same values in the output layer. With a small hidden

layer, the network performs data compression with a least-

squares criterion [6]. When exposed to a new data vector, the

difference between input and output (reconstruction error) is a

measure of how similar the new data vector is to the training

data. In this particular case, the network input at time t consists
of the vector et comprising both sensor data and action data

(Equation 1). The network output is denoted τt. One network

for each skill is created and trained with an event sequence

θβ observed while performing behavior β. In this way, the

characteristics of the sensory-motor patterns from β will be

modeled by the network. When exposed to a new input vector,

the reconstruction error can be used to define the f function

and hence the activity level scaled to [0, 1]:

fβ(θ, t) = 1/ (1− ‖τt − et‖) . (6)

C. S-Comparison

This algorithm is based on S-Learning, a prediction-

based control algorithm inspired by the human neuromotor

system,[21], [22]. S-Learning is able to extract temporal

patterns in presented data, a very attractive property when

comparing sequential data, such as sensor readings and motor

commands. The temporal dimension allows S-Comparison to

make decisions based on several recent samples, in contrast to

β-Comparison (III-A) and AANN-Comparison (III-B) which

both treat each sample separately.

S-Comparison differs in many respects from the S-Learning

algorithm. Some changes are a direct consequence of the

algorithm being used to compute a similarity measure rather

than future actions. Other modifications improve the handling

229

IEEE SMC International Conference on Distributed Human-Machine Systems 2008

50

of continuous data, since S-Learning was originally designed

for discrete data.

Similarly to AANN-Comparison, one model of each skill is

first created from a separate demonstration θβ . Each model,

or pattern library λ = {ρ1, ρ2, . . .}, is a set of patterns ρ =
(e1, e2, ..., em), where each ρ is a sub sequence of θβ . ρ (k)
denotes the k-th element ek in ρ. The concatenation operator

ρ||e combines ρ and e into a new pattern including all elements

in ρ and with e as last element.

Algorithm 1 Training of S-Comparison

1) λ = {∅}
2) ρmax ← null; δmax ← H
3) For each ρ ∈ λ then

δ ←
∑|p|

k=1 1− |ρ(k)−θ(k)|
σ

If δ > δmax then δmax ← δ; ρmax ← ρ

4) If ρmax 6= null then

enew ← θ (|ρmax|+ 1)
ρnew ← ρmax||enew

Else ρnew ← θ(1)

5) Add ρnew to λ then

6) Remove the first |ρnew| elements from θ
7) If θ 6= {∅} then go to 2

Else: Training finished

The initially empty pattern library is populated by traversing

θβ , a detailed description of this training procedure is found

in Algorithm 1. Two constants control the result: The creation

threshold H controls how frequently the algorithm creates

completely new patterns, and the error tolerance σ is a real

number between 0 and 1, balancing pattern length against

correctness. A small σ produces many short patterns, resulting

in an algorithm less prone to fall into false interpretations, but

also with limited ability to recognize temporal patterns.

After training, S-Comparison can be used to define the fβ

function, and hence the activity level for each position in θ.
In the same way as during the training phase, a similarity

measure δ is computed for each ρ ∈ λ given a set of past

events, i.e., all elements in θ up to time t. fβ are defined as

fβ(θ, t) =

{

2
π

arctan (δmax/d) : if δmax > 0
0 : otherwise

(7)

where d denotes the dimensionality of θ. Since the similarity

measure δ is arbitrary and depends on the amount of training

data, the creation level, and the error tolerance, it has no

obvious maximum value. For this reason, the arctan function

is used as a squashing function to keep the activity levels

between 0 and 1.

IV. EXPERIMENTAL SETUP

The three methods for behavior recognition presented in

Section III were evaluated using a Khepera robot from K-

Team [9]. As discussed earlier, the correct way to generalize

any demonstration depends on, among other things, which

skills are available. In the present work, five skills were used,

which all produce common movement behaviors: FLW - Drive

along a wall on left side, FRW - Drive along a wall on

right side, AVOID - Go straight ahead but avoid obstacles,

CORRIDOR - Drive in a narrow corridor without hitting

the walls, and SLALOM - A slalom drive around circular

cones. Each skill was first demonstrated manually using a

standard keyboard interface as remote control. The physical

test environment can be seen in Figure 1. Values from the

eight infrared proximity sensors constituted the sensor vector

xt, while the speed of the two wheels constituted the action

vector yt. None of the presented recognition methods assumes

that the skills are created from a single demonstration, and

consequently θβ should be understood as a general notation

for all demonstrations of a specific β. However, in the present

work, each skill is created from a single demonstration with

a length of about 4000 samples. All values were rescaled to a

number between 0 and 1 and logged at about 10 Hz.

Figure 1. Experimental setup. During both training and test sessions, the
Khepera robot was placed in a large rectangular box with movable walls and
cones, creating a steady and well controlled environment. Sensor readings and
motor commands were recorded while the Khepera was remotely controlled,
demonstrating one or several behaviors. The present image was taken during
demonstration of the Slalom test case, cf. Figure 3.

To ensure that each log file contained all information

necessary to achieve the specific goal, one neural network

for each skill was created. Each network was trained on its

corresponding log file, using the proximity values and wheel

speeds as input and output data, respectively. The networks

had one hidden layer with five nodes. After training, each

network was used as controller β (See Section III) of the robot,

which was then able to repeat the corresponding demonstrated

behavior.

The three behavior recognition methods were evaluated

using two test cases. The first test case, referred to as the

L-demonstration, involved controlling the robot from start to

goal, along the dashed line in Figure 2. Given the skills listed

above, it should be generalized into FLW t=0 to 140, FRW

t=140 to 215, CORRIDOR t=215 to 320 and finally FLW

t=320 to 390.

The second test case, named Slalom-demonstration, involves

230

IEEE SMC International Conference on Distributed Human-Machine Systems 2008

51

t=140

t=0

t=320

t=350

t=60 t=90

t=240

t=210

Figure 2. L-demonstration

t=160

t=0

t=240

t=320

t=380

Figure 3. Slalom-demonstration

driving zigzag through a five-cone track, as illustrated in

Figure 3. This demonstration differs in several ways from the

demonstration used to create the SLALOM skill, both in num-

ber of cones and their relative positioning. The demonstration

could be understood as an instance of the SLALOM skill, or

as a sequence of FLW, FRW, FLW, and so on.

The dark gray circles in Figures 2 and 3 mark the robot’s

initial position, and the dashed circles mark key positions with

the corresponding time stamps. Walls and obstacles in the

environment are illustrated as light gray areas. Note that the

dashed trajectory simply is a coarse illustration of the robots

motion, the real trajectory is significantly more jagged due to

the binary behavior of the keyboard control.

For the β − Comparison, the neural network controllers

created from respective θβ , as described above, were used.

All five skills used in the present work are speed invariant

in the sense that the goal does not depend on the speed of

the robot. Inspired by the work of Olenderski and co-workers

[17], the difference function d (Equation 5) is defined as the

absolute difference in turning rates:

d (β (xt) , yt) = |wt − vt| (8)

where wt represents the turning rate produced by β(xt) and vt

represents the turning rate observed in θ at time t. The turning

rate is given by the difference in speed between the left and

right wheels of the Khepera robot.

The AANN-Comparison and S-Comparison are performed

by first training the algorithms with each θβ . Each AANN

has one hidden layer with five nodes, and is trained for 100

epochs, (very similar results are achieved for 50, 150 and

200 epochs). Neither AANN nor S-Comparison distinguishes

between sensors and actions, and the action vector is not

converted to a turning rate as in β-Comparison.

V. RESULTS

The estimated activity levels produced for the two test cases

are visible in Figure 4 to 9.

A. Results from β-Comparison

When looking at the results for the two test cases it is

obvious that the β-Comparison approach has problems. The

results from the L-demonstration, plotted in Figure4, show

roughly correct estimations of FLW for t=20 to 90, FRW

for t=130 to 210 and CORRIDOR for 150 to 320. However,

during parts of the demonstration, β-Comparison gives the

AVOID and SLALOM skills higher activity levels than any

of the other, although none of these behaviors is part of the

demonstration.

The reason for this poor performance can primarily be

derived from the fact that β-Comparison only compares action

vectors. For example, when driving along a wall on the

left side, β-Comparison has no information about the high

values on the leftmost proximity sensor. The algorithm only

measures the difference in turning rate between the observed

and produced data. When the robot is closer to the wall than

the FLW controller is configured for, the controller returns a

right turn to increase the distance to the wall. However, the

human demonstrator might be more tolerant, accept the current

distance to the wall, and consequently not find it necessary to

turn. As a result, β-Comparison recognizes a relatively large

difference in turning rate, and a low activity level is returned,

even though the episodes from the demonstrator’s point of

view is very similar. This is the reason for the low FLW ratings

for t=90 to 140.

B. Results for AANN-Comparison

The activity level computed by AANN-Comparison varies

a lot between the different skills. In the L-demonstration

(Figure 5), FLW and FRW receive activity levels around 0.8

during their respective parts of the demonstration, wile the

CORRIDOR skill is only given an activity level of about

0.1 during the period where it should receive the highest

levels. However, when looking only at the maximum levels

at each time, the correct skill is identified during almost

the entire demonstration. In the Slalom-demonstration (Figure

8), a sequence of FRW, FLW, FRW, FLW, and finally FRW

is identified. This is, if not the best, at least a reasonable

interpretation of the demonstration.

231

IEEE SMC International Conference on Distributed Human-Machine Systems 2008

52

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e
v
e
l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 4. Recognition of the L-demonstration using β-Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e
v
e
l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 5. Recognition of the L-demonstration using AANN-Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e
v
e
l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 6. Recognition of the L-demonstration using S-Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e
v
e
l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 7. Recognition of the Slalom-demonstration using β-Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e
v
e
l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 8. Recognition of the Slalom-demonstration using AANN-
Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e
v
e
l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 9. Recognition of the Slalom-demonstration using S-Comparison

232

IEEE SMC International Conference on Distributed Human-Machine Systems 2008

53

C. Results for S-Comparison

S-Comparison is the most restrained comparison method,

and causes significantly fewer false alarms than the other

methods, in the sense that it does not give activity levels over

0 to behaviors that clearly do not belong to the demonstrated

data. With the exception of relatively high ratings for the

AVOID and CORRIDOR skills early in the L-demonstration

(Figure 6), inappropriate skills are never given an activity level

over 0.1 in either of the two test cases.

However, even appropriate skills receive relatively low

activity values compared to the other recognition methods.

This can be, at least to some extent, explained by the fact that

the activity levels computed by S-Comparison are arbitrary,

see Section III-C for details.

VI. RELATED WORK

Skills and segmentation points in demonstrated sequences

can be identified in several ways. Segmentation points may

be identified by statistical features in data, for example

thresholding the variance for certain sensor modalities [11],

[19], thresholding the mean velocity of joints [7], [14], or

entropy measures [5]. Another way is to observe the out-

come of the robot actions. In [16], segmentation points are

identified by constantly matching current sensory states with

post-conditions for all pre-programmed skills. Once a post-

condition is matched, both segmentation point and skills are

identified. Other techniques try to directly identify the skills

in the demonstrated data. Bentivegna [3] uses a nearest-

neighbor classifier on state data to identify skills in a marble

maze task. Pook and Ballard [20] present an approach where

sliding windows of data are classified using Learning Vector

Quantization in combination with a k-nn classifier.

To compare the approaches [11], [19], [7], [14], [5], [16],

[3], [20] mentioned above with the work presented in this

paper, it is important to first observe that the complexity of

the skills is a crucial factor when choosing techniques for

segmentation and skill identification. Approaches that look for

general statistical features in data to detect segmentation points

are not sufficient for the high-level behaviors that we are using.

Our second test case, presented in Section IV, shows how both

the location of segmentation points, and the identity of the

actual skills depend on much more than the fluctuations in

data. The Slalom demonstration can be understood as both

an instance of the SLALOM primitive, and a sequence of

FLW and FRW primitive, and the segmentation points have

to be placed differently for these two cases. The activation

levels suggested in this paper serve as a tool to deal with this

ambiguity, e.g. by behavior arbitration or parallel behaviors,

based on fuzzy logic, for example.

Nicolescu’s approach using post-conditions [16] focuses

on the segmentation points and ignores the actual behavior.

This works well for behaviors where the goal determines the

wanted behavior completely, but would fail with other types

of behaviors.

In contrast, the sliding window k-nn classifier presented by

Pook and Ballard [20] focuses directly on the identification

of skills, and is in this sense similar to our approach. In fact,

S-Comparison can be understood as a 1-nn classifier with a

dynamic sliding window, even though it has not been used as

a classifier in this case .

VII. CONCLUSIONS AND FUTURE WORK

We have developed and evaluated three different techniques

for behavior recognition in an LFD setting. All techniques

compute an activity level which can be seen as an alternative

to a pure classification approach. The examples show how

the former approach allows a more informative interpretation

of a demonstration, by not determining "correct" behaviors,

but rather a number of alternative interpretations. As shown

in Figure 8 for example , there is no reason to claim that a

sequence of FLW, FRW, FLW, . . . is more, or less "correct"

than the SLALOM skill. The final decision of how to interpret

the observed event sequence should be left to higher cognitive

levels in a final LFD system. This decision depends, among

other things, on the meaning of "generalization", which we

intend to deal with in our future research.

The three presented techniques differ in the way they utilize

the demonstrated data for behavior recognition. β-Comparison

focuses on actions and ignores the input part entirely. As

discussed in Section V, this leads to unavoidable problems.

The technique is not suitable for segmentation purposes, but

the average activity levels for an entire demonstration may be

useful for work with behavior fusion, such as described in

[17].

AANN-Comparison models the sensory-motor space for

each skill and performs recognition based on how well the

demonstrated data fits into these models. The results are

clearly better than for β-Comparison, both in terms of skill

identification and localization of segmentation points. This can

be explained by AANN-Comparison using the sensor vectors

directly in the comparison process, and consequently it has

much more information available than does β-Comparison.

S-Comparison uses most information of the three evaluated

algorithms. Similarly to AANN-Comparison, it treats sensors

and actuators as a single event vector. In addition, it models

temporal patterns in the event stream. However, the model-

ing power of S-Comparison does not show up as increased

performance in the results, compared to AANN-Comparison.

S-Comparison is less noisy than the other two methods and has

both fewer false positives (high activity level where it should

be low) but also more false negatives (low activity level where

it should be high) compared with AANN-Comparison. This is

clearly visible in the first part of the Slalom test case, Figure

9.

Furthermore, S-Comparison fails to identify exact positions

of the segmentation points. This can be seen as a direct con-

sequence of the temporal dimension of S-Comparison. Since

S-Comparison has not been trained on data describing the

transitions between different skills, such periods yield a low

similarity measure. As seen in Figures 6 and 9, this problem

shows up as gaps in the activity level curves. Similar problems

have been reported by Pook and Ballard [20], evaluating their

window-based approach.

Even though some effort has been put on comparing these

techniques, this work should be seen as an attempt to eval-

233

IEEE SMC International Conference on Distributed Human-Machine Systems 2008

54

uate a concept of behavior recognition, rather than test the

exact performance of presented algorithms. Furthermore, the

problem of identifying characteristics of segmentation points

required to autonomously repeat a demonstrated behavior is

not addressed here. However, by identifying the location of

the segmentation points, we have drastically narrowed down

the problem.

Both skills and task level representations [16] are created in

this approach from manual demonstrations. A thrilling possi-

bility is to use the task level representations, i.e., sequences of

skills, as primitives in even more complex tasks. This would

allow the robot to reuse its experience, both from manual

demonstrations and successful automatic drives. These issues

will be subject to future work.

The present work should also be seen as a step towards

a developed interaction between the robot and its user. The

presented methods transform a complex, multi-dimensional

stream of data into a relatively simple sequence of named

skills, easily read and understood by a human user. From

an interaction perspective, this feature appears as one of the

strongest motivations behind the use of previously learned

skills in LFD, and possibly also in other areas of robotics.

REFERENCES

[1] R. Amit and M. Mataric. Parametric primitives for motor representation
and control, 2002.

[2] C. G. Atkeson and S. Schaal. Learning tasks from a single demonstra-
tion. In In Proceedings of the 1997 IEEE International Conference on

Robotics and Automation, 1997.
[3] Darrin C. Bentivegna. Learning from observation using primitives. PhD

thesis, 2004. Director-Christopher G. Atkeson.
[4] E.U. Braun, H. Mayer, I. Nagy, A. Knoll, S.M. Wildhirt, R. Lange,

and R. Bauernschmitt. An instrumentation system with force feedback,
automatic recognition and skills for cardiac telemanipulation. In Pro-

ceedings 33rd Annual International Conference of Computers in IEEE

Comp Cardiol, volume 33, pages 553–556, 2006.
[5] Paul Cohen, Niall Adams, and Heeringa Brent. Voting experts: An

unsupervised algorithm for segmenting. To appear in Journal of

Intelligent Data Analysis.
[6] K. I. Diamantaras and S. Y. Kung. Principal component neural networks:

theory and applications. John Wiley & Sons, Inc., New York, NY, USA,
1996.

[7] A. Fod, M. Mataric, and O. Jenkins. Automated derivation of primitives
for movement classification, 2000.

[8] Thomas Hellström. Teaching a robot to behave like a cockroach.
In Proceedings of the Third International Symposium on Imitation in

Animals and Artifacts in Hatfield UK, pages 54–61, 2005.
[9] K-Team. Khepera ii mobile robot. www.k-team.com, 2007.

[10] N. Koenig and M. J. Matarić. Demonstration-based behavior and task
learning. Working Notes, AAAI Spring Symposium, 2006.

[11] Nathan Koenig and Maja J Matarić. Behavior-based segmentation of
demonstrated tasks. In In International Conference on Development

and Learning (ICDL),, Bloomington, IN., May 2006.
[12] Paul Martin and Ulrich Nehmzow. Programming by teaching: Neural

network control in the manchester mobile robot. In Proceedings

Intelligent Autonomous Vehicles, 1995.
[13] J. Nakanishi, J. Morimoto, G. Endo, S. Cheng, G. Schaal, and

M. Kawato. Learning from demonstration and adaptation of biped
locomotion. Robotics and Autonomous Systems, 47:2–3:79Ű81, 2004.

[14] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. Ikeuchi. Recognition and
generation of leg primitive motions for dance imitation by a humanoid
robot, 2003.

[15] Monica Nicolescu and Maja Matarić. Linking perception and action in
a control architecture for human-robot domains. In Thirty-Sixth Hawaii

International Conference on System Sciences, HICSS-36, Hawaii, USA,
January 2003.

[16] Monica Nocolescu. A Framework for Learning from Demonstration,

Generalization and Practice in Human-Robot Domains. PhD thesis,
University of Southern California, 2003.

[17] Adam Olenderski, Monica Nicolescu, and Sushil Louis. Robot learning
by demonstration using forward models of schema-based behaviors. In
Proceedings of the Second International Conference on Informatics in

Control, Automation, and Robotics., volume 3, pages 263–26, 2005.
[18] J. Peters and S. Schaal. Policy learning for motor skills. In Proceedings

of 14th international conference on neural information processing

(iconip), 2007.
[19] Richard Alan Peters II and Christina L. Campbell. Robonaut task

learning through teleoperation. In Proceedings of the 2003 IEEE,

International Conference on Robotics and Automation, pages 23 — 27,
Taipei, Taiwan, September 2003.

[20] Polly K. Pook and Dana H. Ballard. Recognizing teleoperated manipu-
lations. In ICRA (2), pages 578–585, 1993.

[21] B. Rohrer and S. Hulet. Becca – a brain emulating cognition and
control architecture. Technical report, Cybernetic Systems Integration
Department, Sandria National Laboratories, Alberquerque, NM, USA,
2006.

[22] B. Rohrer and S. Hulet. A learning and control approach based on the
human neuromotor system. In Biomedical Robotics and Biomechatron-

ics, 2006. BioRob., pages 57–61, February 2006.
[23] H. Urbanek, A. Albu-Schäffer, and P. Smagt van der. Learning from

demonstration repetitive movements for autonomous service robotics.
In IROS 2004 IEEE RSJ International Conference on Intelligent Robots

and Systems, Sendai, Japan, Sept. 28-Oct.2, 2004, 2004. LIDO-
Berichtsjahr=2004.

234

IEEE SMC International Conference on Distributed Human-Machine Systems 2008

55

56

III

Paper III

A Formalism for Learning from Demonstration∗

Erik Billing and Thomas Hellström

Dept. Computing Science, Umeå University, SE-901 87 Umeå, Sweden
billing@cs.umu.se and thomash@cs.umu.se

www.cs.umu.se/research/robotics

Abstract: The paper describes and formalizes the concepts and assumptions in-
volved in Learning from Demonstration (LFD), a common learning technique used
in robotics. LFD-related concepts like goal, generalization, and repetition are here
defined, analyzed, and put into context. Robot behaviors are described in terms of tra-
jectories through information spaces and learning is formulated as mappings between
some of these spaces. Finally, behavior primitives are introduced as one example of
good bias in learning, dividing the learning process into the three stages of behavior
segmentation, behavior recognition, and behavior coordination. The formalism is ex-
emplified through a sequence learning task where a robot equipped with a gripper arm
is to move objects to specific areas. The introduced concepts are illustrated with spe-
cial focus on how bias of various kinds can be used to enable learning from a single
demonstration, and how ambiguities in demonstrations can be identified and handled.

Keywords: Learning from demonstration, Ambiguities, Behavior, Bias, Generaliza-
tion, Robot learning.

∗ Copyright c© Springer Verlag. All rights reserved. Reprinted, with permission, from Paladyn: Journal
of Behavioral Robotics. 1:1, 2010.

59

60

PALADYN Journal of Behavioral Robotics

Research Article · DOI: 10.2478/s13230-010-0001-5 · JBR · 1(1) · 2010 · 1-13

A Formalism for Learning from Demonstration
∗

Erik A. Billing† , Thomas Hellström‡

Department of Computing Science,

Umeå University, Umeå, Sweden

Received 12 October 2009

Accepted 26 February 2010

Abstract

The paper describes and formalizes the concepts and assumptions involved in Learning from Demonstration
(LFD), a common learning technique used in robotics. LFD-related concepts like goal, generalization, and rep-
etition are here defined, analyzed, and put into context. Robot behaviors are described in terms of trajectories

through information spaces and learning is formulated as mappings between some of these spaces. Finally, behav-

ior primitives are introduced as one example of good bias in learning, dividing the learning process into the three

stages of behavior segmentation, behavior recognition, and behavior coordination. The formalism is exem-

plified through a sequence learning task where a robot equipped with a gripper arm is to move objects to specific

areas. The introduced concepts are illustrated with special focus on how bias of various kinds can be used to enable

learning from a single demonstration, and how ambiguities in demonstrations can be identified and handled.

Keywords

learning from demonstration · ambiguities · behavior · bias · generalization · robot learning

1. Introduction

Learning From Demonstration (LFD) is a well established tech-

nique for teaching robots how to perform useful tasks. The basic idea

is that the robot learns a behavior from one or several demonstrations

performed by a, most often human, teacher. The research area is at-

tractive, both in its intuitive approach to human robot interaction and as

a framework for a theoretical analysis of knowledge representation and

transfer of knowledge between intelligent agents.

Research on LFD is influenced by a variety of fields, including control

theory, artificial intelligence, psychology, ethology, and neuro physiol-

ogy. While primarily being a big asset, the multidisciplinary nature of

LFD also contributes to the lack of a unified formalism for the different

components constituting the research field. It should not come as a

surprise that the terminology used differs for works conducted by re-

searchers from various areas. In this paper, we define and formalize

the common ideas and principles involved in LFD. The presented work

is both a survey of how these concepts are used in research, and an

attempt to describe them in the light of related concepts in machine

learning, planning theory, and psychology. To our knowledge this has

not been previously done in a unified way and the result can be used

both as a theoretical introduction to the field and as framework for fur-

ther development and research. In contrast to other surveys of the

area [4, 12], the present work specifically focuses on LFD where the

robot is directly controlled during demonstration, e.g. via teleoperation

or kinematic teaching. While this direction removes some of the hard

and important issues in LFD, it allows increased focus on other aspects,

∗Parts of this text also appear as a technical report: E. A. Billing and T. Hell-
ström. Formalising Learning from Demonstration, UMINF 08.10, Department of
Computing Science, Umeå University, Sweden, 2008.
† E-mail: billing@cs.umu.se
‡ E-mail: thomash@cs.umu.se

specifically how bias is introduced into the LFD process.

The formalism is applied to a sequence learning task in which the in-

troduced concepts are illustrated with a special focus on how bias of

various kinds can be used to enable learning from a single demonstra-

tion, and how ambiguities in demonstrations can be handled.

The formal approach is inspired by the work on planning and actuation

by LaValle [53] and therefore does not always follow the terminology

and notation found in common literature on LFD. Where this is the case,

it is highlighted and the commonly used terms are referred.

In Section 2, a few fundamental concepts that form the basis for the

rest of the paper are introduced. Section 3 gives a formal description of

the learning process using these concepts. In Section 4, the introduced

formalism is applied on a sequence learning task using a Khepera robot

equipped with a gripper arm. Section 5 summarizes the paper and

discuss directions for future research. A symbol index summarizing

introduced notations can be found in Table 5.

2. Basic concepts

2.1. State space

One fundamental component in classical AI is the concept of a state
space X , described by a world ontology [77, p.222]. The state space

can be defined as a set of all possible situations that could arise in the

world [53, p.17]. More specifically, the state space only includes the

relevant aspects of the world, given a particular task or limited set of

tasks. However, if the task is unknown it is very difficult to identify which

aspects of the world are relevant. One could of course try to include all

aspects that might be of interest, but even if possible, that would result

in a huge and complex state space, implying tremendous sensing re-

quirements when applied to a field such as LFD. Furthermore, defining

a state space introduces many unnecessary assumptions about the

world, and requirements for information which make the problem much

more complex than necessary. This observation is nicely illustrated by

1 61

PALADYN Journal of Behavioral Robotics

Simons’ ant [81] and is also related to the frame problem [47, 62].

For these reasons, it is desirable to create new spaces, less task-

specific and sensor-demanding, in which behaviors can be repre-

sented. Such a redefined representation is referred to as an infor-
mation space [53, ch.11]. The concept of information spaces is also

common within LFD, but appears under different names. In order to

facilitate learning, approaches to LFD often utilize so called primitives
or skills. These primitives can be seen as building blocks from which

more complex behaviors can be composed, which results in moving the

learning process away from the state space into a new representational

space composed of the available skills, e.g. [8, 34, 46, 51, 65, 68].

Many of these approaches relate strongly to Behavior Based Con-
trol (BBC) [5, 58, 60]. BBC has its roots in the reactive paradigm, but

emphasizes parallel, loosely connected behaviors for control of the

robot as an emergent property, rather than a single stimuli-response

loop.

The possibility of applying the concept of information spaces within LFD

is further investigated in Section 3, but first a few other basic concepts

have to be introduced.

2.2. Sensing and acting

Imagine an agent interacting with the environment. It perceives the

world through its sensors and acts upon the world with its actuators.

The sensors are defined as a function h : X → Y transforming a state

x ∈ X into a sensor state y ∈ Y [53, p. 561]. Y denotes the observa-
tion space, i.e., the set of all possible readings returned by the agent’s

sensors. Each y ∈ Y is a vector (y (1) , y (2) , ...) comprising simulta-

neous values from all sensors. Typical examples are a thermometer that

maps physical temperatures x to numbers y (1) ∈ R or a GPS receiver

that maps physical positions to latitude and longitude, y (2) ∈ R
2. Y

corresponds to the stimulus domain in behavior-based robotics [5].

On the actuator side, actions can be said to transform a state into an-

other state. Hence, actuators implement the function f : X × U → X
where U denotes the action space, i.e., the set of all possible actions

the agent can execute. A typical example is the requested velocity for

each motor of the robot. Note that this does not specify the actual mo-

tor velocity, and only the outgoing information is represented in U. The

actual velocity is usually represented in state space X .

Now a description of how the agent behaves, i.e. generates actions,

can be introduced. In general, such a description is referred to as a

controller, but is also known as a plan [53, p.560], behavior map-
ping [5, 27, 68, 71], motor primitive [3], control policy [4] or inverse
model [39]. Several important differences between these terms do ex-

ist, for example in terms of abstraction level and temporal extension,

but for now they can all be said to implement the function π:

π : X → U. (1)

Hence, π maps states x ∈ X to actions u ∈ U. As mentioned before,

X is not explicitly represented in the agent. Still, the physical sensors

and actuators can be said to implement the functions h and f , respec-

tively. In contrast, π can not be implemented without an explicit defi-

nition of and access to X . To solve this issue, π is later redefined and

then controls the agent based on the information space instead of the

state space.

2.3. Information space

The observation and action spaces are widely used by the robotics

community. These spaces are often combined into a information
space I = U × Y , also known as the sensory-motor space [73].

In each stage k the robot experiences a sensory-motor event ek =
(uk−1, yk) ∈ I. The action at k − 1 is used since uk changes the

current stage to k + 1.

One approach that extensively uses representations in I is sensory-
motor coordination (SMC) [72]. From an SMC perspective, sensing

and acting are not two separate processes. In contrast to classical re-

active systems, SMC does not view the information flow purely as going

from sensors to actuators. Actions give rise to stimuli, just as much as

stimuli influences actions. If the agent can predict these relations, it

can intentionally control its interactions with the world. Hence, control

is seen as a problem of coordination. Similar views are common within

psychology, anthropology and cognitive science, [37, 45, 82].

The sensory-motor space I has several advantages when compared

to the state space. Most importantly, it is easily defined. If an agent is

designed with a fixed number of sensors and actuators, the size of I re-

mains constant independently of environment and task. Of course this

limits the possibility of adding new sensors or actuators to the agent

without changing the robot’s representational space and as a conse-

quence affects previous representations, but for many applications this

is a reasonable limitation. The sensory motor space also has a number

of drawbacks. In contrast to state space, I does not necessarily contain

all information necessary to make a control decision at each moment. A

decision, i.e., selection of the next action, may have to be based not on

the most recent sensor and motor readings, but on complex patterns of

previously observed sensory-motor events. Let Ỹk denote the history
observation space, i.e., the set of all possible observation histories ỹk

until current stage k :

ỹk = (y1, y2, . . . , yk) ∈ Ỹk (2)

where each vector yi ∈ Y is provided by the sensors at stage i. Sim-

ilarly, let Ũk be the history action space, i.e., the set of all possible

action histories until current stage k :

ũk = (u1, u2, . . . , uk) ∈ Ũk (3)

where each ui ∈ U is a particular action vector issued at stage i.
The histories ỹk and ũk in combination with the initial conditions η0 form

a history information state ηk , also referred to as an event history.

ηk includes all accumulated information up to stage k [53, p.566]:

ηk = (η0, ũk−1, ỹk) ∈ Ik (4)

The initial conditions η0 describe presumptions about the state of the

world X before stage 1. The history information state is a central con-

cept in the formalism since it represents all the information the agent

has received, and as a consequence ηk is always known in stage k . Ik
is known as the history information space and should be understood

as the set of all possible event histories up until stage k [53, p.565]:

Ik = I0 × Ũk−1 × Ỹk (5)

where I0 represents the set of all possible initial conditions.

The definition of Ik becomes impractical in cases where the number

of stages is not fixed. Instead, we normally refer to the information
history space Ihist , which has an unspecified length [53, p.657]:

Ihist = I0 ∪ I1 ∪ I2 ∪ . . . (6)

Ihist includes all possible combinations of everything the agent could

possibly observe and do. Most η ∈ Ihist will of course never ap-

pear, due to limitations imposed by the environment and the physical

262

PALADYN Journal of Behavioral Robotics

shape of the robot. For example, imagine a simple robot, equipped with

a proximity sensor on each of its four sides, placed in an empty large

square box. In this environment, the robot never observes a yk with

high activation of all proximity sensors simultaneously. This is a simple

consequence of physical properties of the environment and the robot

itself. The same reasoning could easily be applied to a human agent.

There is a huge amount of patterns the human senses theoretically

could perceive, but only a fraction of these will actually be observed.

Most of the formal definitions in this paper take place in history infor-

mation space Ihist . You might ask why representations take place in

such a huge and complex space when only a fraction of its represen-

tational power is actually used. Ihist should not be understood as the
representational space, but a representational space, a very basic one.

Any information the agent can acquire is representable as an event his-

tory η ∈ Ihist . Furthermore, Ihist is, in contrast to state space X , both

well defined and completely task invariant and is as such very suitable

for learning purposes. However, in many other respects Ihist is not the

best representational space. Ihist contains a lot of redundant informa-

tion, making it difficult to extract features relevant to the specific task.

For this reason, a new derived information space Ider may be cre-

ated. Ider should be seen as a simplification of Ihist , where relevant fea-

tures are represented, while irrelevant information is not contained, [53,

p.571]. The observant reader may think this sounds disturbingly simi-

lar to the formulation of state space. This observation is highly relevant

and reflects to some extent the purpose of inferring Ider . The use of

derived information spaces as bias in learning, and its relation to the

state space, is further discussed in Sections 3.2 and 3.4.

2.4. Controller

The controller defined in Equation 1 can now be reformulated in a form

that allows it to be used without full access to state space X :

uk = π (ηk) (7)

where uk ∈ U is the action vector issued at stage k and ηk ∈ Ik is the

agent’s event history at stage k . π is defined here as a function from

information history space to action space:

π : Ihist → U. (8)

In simple cases, a controller can be modeled as a function of only

the most recent sensory-motor event. Systems based purely on such

single-event controllers are called reactive systems [21]. Formally,

these systems implement π as

uk = π (yk) (9)

which can be seen as a special case of Equation 7. This definition of

π is similar to Arkin’s behavior mapping β : S → R , where S and

R are stimulus and response, respectively [5]. However, in the general

case we use the definition of π given in Equation 7.

2.5. Behavior

The word behavior is commonly understood as an agent’s actions in

relation to the environment, but in the robotics community it has many

different meanings. In the present work, behavior is understood as

a purposeful way of acting. This does not imply that behaviors include

explicit representations of goals, but from an observer’s point of view,

the behavior can be said to implement some kind of purpose, or goal.

This argument is developed in Section 3.3.

Using the introduced terminology, a behavior B is defined as a subset

of information history space B ⊂ Ihist . Each element in B is an event

history η that represents one instance of the desired behavior.

Often, no explicit distinction is made between the observable in-

teractions with the world, and the mechanisms producing these in-

teractions. However, B describes nothing about how the behavior

is produced, and therefore this notion of behavior is different than

the terminology commonly used within behavior-based robot architec-

tures [5, 27, 58, 68]. B is purely an intrinsic definition and describes

exclusively the behavior from the agent’s perspective.

3. Learning From Demonstration

Learning From Demonstration (LFD) is a well established tech-

nique for robot learning. An overview of early work is found in the work

by Bakker and Kuniyoshi [6] while recent work and classification of the

field is found in the survey by Argall et al. [4]. Another excellent survey

of the area can be found in a recent book by Billard et al. [12]. The ba-

sic idea in LFD is that the robot learns to do things by observing other

agents, be it human beings or other robots. Several flavors of this ap-

proach exist and the terminology used differs somewhat in published

research. Similar approaches are presented under terms like Imitation
Learning, Learning From Experience, Learning From Observa-
tion and Robot Programming by Demonstration. See the work by

Argall et al. [4] for more details on terminology.

Research on LFD has been divided into four key problems: what, how,
when and who to imitate [11, 12]. What to imitate refers to the prob-

lem of identifying which aspects of the demonstration are relevant for

the task [20]. How to imitate is the question of how the skill is to be

encoded. A central part of this issue is the correspondence problem
[66, 67] which refers to the process of mapping the observed sequence

of events to corresponding actions of the pupil. In most practical situ-

ations the pupil is not given an explicit set of demonstrations, but the

pupil must detect when the teacher is doing something related to the

task to be learned. This problem is known as when to imitate. Fi-

nally, who to imitate refers to the identification of the teacher, which

is also a difficult issue in many applications. These four questions are

very general and can also be applied to learning situations with human

or animal pupils. In practice, what and how to imitate are the most

frequently studied problems within LFD.

New behavior can be demonstrated to a robot in many ways, for ex-

ample by having the robot pupil watch the teacher demonstrate the

desired behavior. Here we focus on LFD where the teacher directly

controls the robot, e.g. by teleoperation. The recorded data sequence

from such a control session, including both executed motor commands

and sensor readings, is denoted demonstration. The purpose of LFD

is to create a controller π capable of reproducing the demonstrated be-

havior. While there are many other ways to demonstrate a new behavior

to a robot, LFD via teleoperation constitutes a well defined setting that

can be generalized to many practical applications. Formally, a demon-

stration is, in this setting, an event history ηk ∈ Ihist (refer to Equation

4) where ũk−1 is the sequence of actions issued by the teacher up to

stage k − 1 and ỹk is the sequence of observations up to stage k .

In this setting, a direct correspondence between recorded events in a

demonstration and sensors and actuators is assumed (a direct record

mapping and no embodiment mapping, following the terminology by

Argall et al. [4]). The observations yk in the demonstration are as-

sumed to correspond to the observations that are generated in real-

time by the sensors and sent to the controller. Furthermore, the ob-

served action variables uk are assumed to directly correspond to the

actuator signals generated by the controller π. This relates to self-

3 63

PALADYN Journal of Behavioral Robotics

imitation, i.e., the pupil learns by performing the actions itself, with

help from a teacher [78, 79]. Self-imitation, in contrast to imitation of

others, avoids two difficult problems. Firstly, the problem of observing

the teacher’s actions, and secondly, the correspondence problem.

LFD has its roots in the more general approach to create computer

programs from demonstrations, known as Programming By Demon-
stration (PBD) or Programming By Example (PBE), e.g. [26, 54].

However, modern LFD is far from these general approaches. This paper

presents a formalism for robot learning through demonstration, which,

while it can be seen as the creation of a specific kind of computer pro-

grams, does not aim at the wider interpretations of PBD or PBE.

The goal of LFD is, in this context, to generate a controller π that en-

ables a robot to repeat a demonstrated behavior B. π may be a state-

action mapping, a model of the world dynamics (system model) or

a model of action pre- and postconditions (plans), see the work by Ar-

gall et al. [4] for details. If successful, the robot is said to have learned

behavior B. Formally, the process of learning B from a set of N demon-

strations b is understood as selecting π from the controller space Π
using a learning function λ:

π = λ (b) ∈ Π (10)

where b is the set of event histories η that constitute the demonstration.

The LFD process is illustrated in Figure 1. Π contains all possible con-

trollers for a specific chosen observation space and action space. This

is of course a huge space that is never computed explicitly.

The selected controller π must have specific qualities for the learning

to be regarded successful. These qualities are related to the event

histories η that may be generated by a robot using controller π. The

realization space R ⊂ Ihist for a π is defined as the set of all such

event histories, generated by the realization function Λ:

R = Λ (π) ∈ Ihist (11)

Λ can be seen as an abstraction of the physical robot placed in a par-

ticular environment and controlled by a specific π, able to produce the

set of all possible trajectories through Ihist . Of course, the robot can

not control the produced event histories η ∈ R entirely on its own, but

relies on an external component, the environment. This creates a nice

analogy to λ, which also relies on an external component, called bias.

Thus the learning function λ can be seen as the inverse function of

the robot represented by Λ. λ maps a set of event histories to a con-

troller and Λ maps a controller to a set of event histories. This is further

developed in Section 3.2.

The process of selecting π has many similarities to system identifica-

tion, where a model of the system is constructed from observed input

and output data [55]. The system, consisting of the agent and its en-

vironment, is modeled such that the system output uk+1 can be pre-

dicted given a sequence of previous inputs and outputs ηk until stage

k . However, the aim of system identification is in one sense much more

ambitious than LFD, since the system’s response to any input yk is to

be predicted. In LFD, we are satisfied with a π producing an action that,

if possible, leads to an event sequence ηk+1 ∈ B given that ηk ∈ B.

In other words, LFD does not necessarily model the outcome of all pos-

sible actions uk in each state, only the ones that occur for the robot in

a particular environment.

B should be understood as the set of event histories the human teacher

associates with a particular desired behavior. For example, if the

teacher wants to teach the robot to move to a door, B would contain

all event histories where the robot ends up by a door, in an accept-

able way. The behavior must be formulated such that the robot is able

R

B

λ

b

Λ

π

П
Ihist

Figure 1. The LFD process. The light-colored area represents the wanted
behavior B which is demonstrated with N training demonstrations

b =
{

η(1), ..., η(N)} ⊂ B represented by the dark-colored area.

The learning function λ creates a controller π ∈ Π. In interaction
with the environment, π realizes (repeats) the learned behavior. The
realization set R ⊂ Ihist is marked by the dashed line.

to reproduce the behavior in all desired environments. There may be

situations in which the robot can not distinguish between significant as-

pects of the world. In these cases, the robot’s sensing capabilities or

other aspects of the behavior have to be modified. Assume that the

move-to-door behavior is to be applied to a robot in a hotel environ-

ment. The robot must now be able to separate between doors. One

alternative is to add a new sensor allowing the robot to directly identify

each door it approaches, resulting in a redefined Ihist . Another alter-

native is to change the behavior such that the robot can use existing

sensors, e.g. wheel odometry, in order to distinguish different doors by

their locations. This corresponds to a modification of B.

The quality of the generated π is typically described as the ability to

“repeat a behavior”, which is the topic of the next section.

3.1. What does it mean to repeat a behavior?

The goal of LFD is to generate a controller π that enables a robot to

repeat a demonstrated behavior B given a set of demonstrations b.

This may sound like a well defined mission, but is actually both vague

and ambiguous. Consider the following example of a seemingly trivial

demonstration.

Figure 2. A simple demonstration where the tip of a robot arm starts at the red
cross in the lower right corner and moves over the table until it is po-
sitioned over the green cube. The demonstration can be interpreted
in a number of fundamentally different ways.

Observe a sequence of sensory-motor events describing a robot arm

moving over a table, finally stopping when positioned above a green

cube (Figure 2). What does it mean to repeat this sequence of events?

464

PALADYN Journal of Behavioral Robotics

One could imagine a vast number of interpretations. Here are a few

examples.

1. Assuming that the path is the important aspect of the demon-

stration, a successful controller may be written as u =
πPATH(y) where the function πPATH computes an action u for

each pose y, such that the arm follows the demonstrated path.

This kind of learning scenario refers to traditional programming

of industrial robot arms, as well as path-tracking autonomous

vehicles, e.g. [43].

2. Instead, if the demonstration is seen as an example of how

to reach the final position, the path itself becomes irrelevant

and the controller described above would not be suitable. In

this case, a successful controller could be written as u =
πTARGET (y) where the function πTARGET uses inverse kinemat-

ics to compute actions such that the tip of the robot arm reaches

the target.

Case 1 corresponds to what is often called action-level imitation
[22] where the robot carries out the same actions as the demonstrator.

Case 2 is often called functional imitation [29] in which the robot is

supposed to achieve the same effect on the environment [67]. In the

work by Alissandrakis et al. [2], the quality of action-level imitation is

measured in state and action metrics while functional imitation is mea-

sured in effect metrics. State and action metrics define the similarity of

behaviors in terms of the state and/or actions of the agent, while effect

metrics define behavior in terms of their effect on the environment.

Within these two categories one could imagine a vast number of inter-

pretations. Should the observed sequence of positions be understood

as fixed coordinates, or relative to the robot arm’s starting position?

Is the green cube really the relevant target, or is the target defined by

an absolute position? Is the target a cube of any color, or or is the

target perhaps any green object? Using many demonstrations of the

same behavior reduces some of the ambiguity, but in general it is im-

possible for the learner to tell which interpretation is “correct” without

further information. In fact, the learner can not even enumerate a set

of possible interpretations without a specification of state variables rel-

evant for the task to be learned. The discussion about what it means

to repeat a behavior becomes complicated further when the robot acts

in a dynamic, non-deterministic and partially accessible [77, ch.2] en-

vironment. Demonstrated event sequences may be both incomplete

and contain mistakes that should not be learned or repeated [28].

If the robot manages to successfully repeat a demonstrated behav-

ior under different conditions than during the demonstration we say

that the robot is able to generalize the demonstrated behavior. More

specifically, we refer to the robot’s ability to produce an event history

ηk ∈ B, under conditions ηk−1 not identical to the ones appearing dur-

ing the demonstrations in b. This can be formally described as how well

the realization space R corresponds to the desired behavior B, e.g. as

a minimization of R r B and B r R (refer to Figure 1).

Generalization can also be viewed as an extension of b by interpola-

tion or extrapolation of the demonstrated event histories. For this to

work one has to specify the aspects of the demonstrated data that

are important, i.e., the previously mentioned problem of what to imi-
tate (Section 3). One approach is to introduce a metric of imitation
performance [1, 2, 10]. Repeating a demonstration means minimiz-

ing the distance between the demonstrations and the repetitions us-

ing this metric. To find the metric, the variability in many demonstra-

tions is exploited such that the essential components of the task can

be extracted. One promising approach to construct such a metric is

to use the demonstrations to impose constraints in a dynamical sys-

tem [24, 38, 44]. Giovannangeli and Gaussier [35] use human-robot

interaction to improve generalization when learning sensory-motor be-

haviors for homing and path following. In the described work, teaching

by error correction (proscriptive learning), is shown to give superior gen-

eralization compared to a regular demonstration (prescriptive learning).

The generalization problem is also acknowledged outside the LFD com-

munity. In Machine Learning, the term generalization performance
of a learning algorithm relates to “its prediction capability on indepen-

dent test data” [41, p.193] which is identical to the common usage

of the term in robotics. The general problem with machine learning

in high-dimensional spaces is often expressed as the curse of dimen-

sionality [33, p.170], and is highly relevant also for robots with high-

dimensional observation and action spaces. Learning in such situa-

tions becomes inherently difficult since the demonstrated data fills his-

tory information space very sparsely and interpolation and extrapola-

tion become highly risky operations. The situation is related to the No
Free Lunch Theorem [85], which states that for a large class of ma-

chine learning algorithms, there is no universal best algorithm to solve

all problems. Instead, an algorithm has to be specialized to the prob-

lem under consideration to guarantee its superiority over any random

algorithm. This specialization consists of additional task-dependent in-

formation that has to be supplied to the learning algorithm as bias. In

the case of LFD, possible sources of bias are the robot’s prior knowl-

edge, feedback from the environment when the robot tries to repeat the

demonstrated behavior and human feedback before, during, and after

learning. The bias concept is further investigated in the next section.

3.2. Bias

The bias of a machine learning algorithm is defined as “any basis for

choosing one generalization over another, other than strict consistency

with the observed training instances” [63]. The basis may be seen as

form of pre-evidential judgment, or prejudice regarding the structure

of the data or the data generating process. In the case of numerical

regression, assuming a linear relation between input and output corre-

sponds to a high bias, while a cubic model corresponds to a lower bias.

In the case of LFD, bias can be applied to three different parts of the

problem definition:

1. Sensor variables. This can involve selection of relevant sensors,

or extraction of specific features that are judged relevant for the

specific task. It may also involve creation of intelligent sensors

to facilitate feature extraction.

2. Action variables. Most often this involves restricting the output

of the controller π to one or a few actuators. For example when

learning a grip operation, the actions for moving the robot may

be regarded irrelevant while the gripper motion is highly relevant.

This reduces the size of action space.

3. Controller function π. Bias can restrict the functional form of π,

e.g. to an artificial neural network of a specific size and archi-

tecture. Bias can also be expressed as general requirements of

π, such as smoothness criterion or lower/upper bounds. The

use of predefined skills as described below is another example.

Bias can be introduced into the learning process in a number of ways.

First of all, it may be hard-coded into the learning algorithm, e.g. by

choosing a specific neural network [57] or rule based framework Hell-

ström [42] to represent π. Another common and very powerful tech-

nique to introduce bias is to use predefined skills or behavior primi-

tives. Besides being biologically motivated [36, 64], the technique is

commonly used in robotics research, e.g. [34, 59, 61, 68]. Learning

is in this case reduced to selection of the right primitives and param-

eter estimation to adjust the primitives to the demonstrated data. The

5 65

PALADYN Journal of Behavioral Robotics

introduction of primitives is a way to reduce the dimensionality of the

learning problem (i.e. to deal with the curse of dimensionality men-

tioned above). The set of primitives is obviously much smaller than

Π which clearly simplifies learning. An analogy is numerical regres-

sion with a large feed-forward neural network compared to a low-level

polynomial. The polynomial introduces bias that makes learning much

easier, at the price of limiting the solution to the specific functional form

of the bias.

Regarding bias for sensors and actuators, it is common to hard-code

a set of relevant sensors and action variables for the task at hand,

or to pre-process the data before feeding it to the learning algorithm.

This kind of bias may also be introduced by interaction with the human

teacher who tells the robot to use specific sensor modalities. Saun-

ders and coworkers present an approach where relevant elements of

the state vector are weighted based on their information gain and on

manual selection from a teacher [70, 79].

Bias may also be subject to meta learning, suitable sensors can for ex-

ample be selected based on demonstrated data. This relates to atten-
tion and saliency which are important concepts in theories for human

and animal learning. The term shared attention refers to a teacher’s

and a learner’s simultaneous attention to the same objects. Scassel-

lati used the Cog platform [80] to investigate shared attention between

humans and robots. Saliency refers to the components of the environ-

ment that are important for a given task, and it clearly introduces a bias

by reducing the size of observation space Y . Breazeal and Scassel-

lati, [18] describe the relationship between attention and saliency and

how the concepts can be used to facilitate learning in robotics.

These techniques relate to the psychological term scaffolding, which

is used to denote interaction between caretakers and infants in order

to reduce distractions, marking a task’s important attributes and re-

ducing the number of degrees of freedom in the learning task in gen-

eral [19, 87]. All these operations aim at simplifying the learning task

by introducing bias to the problem definition.

From a formal perspective, bias regarding sensor and action variables

may be introduced by moving away from Ihist into a new, derived infor-

mation space Ider [53, p.571]. Ider is a reformulated or pre-processed

version of the information in Ihist . The mapping from Ihist to Ider is de-

noted κ, and may have an arbitrary shape:

κ : Ihist → Ider. (12)

An element of Ider is referred to as a derived event history ηder and

can be generated from η ∈ Ihist using the mapping κ. Therefore, Ider

does not serve as a general purpose representational space as Ihist

does, but rather as a task-specific representation where relevant fea-

tures become salient, while irrelevant information is not retained. The

purpose of Ider is similar to the purpose of the state space X . In fact,

a state space is one possible instance of Ider , but there are numerous

other possible derived information spaces that do not aim at represent-

ing states in the world.

The LFD process with bias included is illustrated in Figure 3. Various

ways to introduce bias regarding the control function π result in a re-

duced set Πp ⊂ Π. The learning function λ maps from the derived

information space Ider instead of straight from Ihist . This extended for-

mulation of LFD is further discussed in Section 3.4.

Referring to Figure 3, the what to imitate question shows up as

a transformation problem from Ihist to Ider , i.e., an identification of the

relevant aspects of the task. Since we are focusing on a self-imitation

setting, the correspondence problem is not present here. However,

there is still the problem of selecting a controller πp ⊆ Πp based

on bder , reflecting the remaining parts of the how to imitate question.

When to imitate appears as ensuring that b ⊆ B, i.e., that everything

in the demonstration set b is actually part of the desired behavior.

R

B

λκ

b

Λ

ПIhist

πp
П P

derI

bder

Figure 3. The LFD process with bias introduced. A derived information space
Ider is introduced as a space where the behavior may be represented
in a task-specific way. Training data b is mapped into Ider with an in-
formation mapping κ. The pre-processed information in Ider and var-
ious ways to introduce bias in λ result in a reduced set of possible
controllers ΠP , illustrated by the light colored area in Π. Compare
with Figure 1.

Our discussion about bias has so far been focused on knowledge in-

tentionally introduced into the system to facilitate learning. We like to

refer to this kind of information as ontological bias. However, there are

also a vast number of restrictions to the problem introduced for other

reasons. As mentioned before, selecting a specific type of algorithm to

represent π will introduce bias. A particular configuration of the robot’s

sensors and actuators restricts the ways in which it can solve a particu-

lar task. Often the choice of physical platform and software architecture

is made for practical reasons rather than for an understanding of on-

tological implications. We like to phrase these kind of restrictions as

pragmatical bias.

Independent of the type of bias being introduced into the system, it

limits the behaviors the robot can learn. Consequently bias is not nec-

essarily positive. Instead, one should aim at a suitable level of bias,

such that the robot can learn as many interesting behaviors as possi-

ble, while still being able to generalize correctly.

As mentioned above, using pre-defined skills or behavior primitives is

a common way to define Πp. The demonstrated data are in such cases

used to identify a suitable primitive and may also be used to set param-

eters for the selected primitive. One way to define such primitives is to

associate them with achievement of specific goals. This concept de-

serves special attention and is analyzed further in the next section.

3.3. Goal

The success or failure to repeat the demonstrated behavior is most

often judged by the human demonstrator, and to describe the human

intentions we use the word goal. The goal of a behavior is a human

concept and can be of two major types [68]:

1. Maintenance goals. A specific condition has to be maintained

for a time interval, such as the path-tracking scenario described

in Example 1 in Section 3.1.

2. Achievement goals. A specific condition has to be reached,

such as the motion to a green cube in Example 2 in Section

3.1.

666

PALADYN Journal of Behavioral Robotics

A behavior B was earlier introduced as a set of event histories that,

from a teacher’s perspective, fulfills some common purpose. This can

be understood as after performing B, specific conditions in the world

are satisfied. This is analogous with the common goal formulation from

classical AI, where a goal G is a set of states in state space [77]:

G ⊂ X. (13)

All the information the agent acquires about G is accumulated over

time in ỹ and ũ. Therefore, any goal G which can be measured with

the agent’s sensors can also be formulated as a set of event histories

η ∈ Ihist :

GI ⊂ Ihist . (14)

This should be understood as after observing an η ∈ GI we know

that G is satisfied. A consequence of this formulation is that behaviors

and goals are represented in the same way, and since any η ∈ B by

definition satisfies the goal of B, GI and B become identical:

GI = B. (15)

This may also be explained from the reversed perspective. When X is

viewed as a derived information space, G will cast a pre-image into Ihist

which per definition will be identical to B. Still, this formulation of goals

is not very satisfying. In state space, G most often has an intentional

definition, a neat formulation that describes the minimum requirements.

However, in the task invariant Ihist , a neat goal can not be formulated

since no bias has been introduced.

When a human teacher speaks about goals he or she uses task specific

information which in principle could be transferred to the robot as bias.

This is partly what is done when a state space is defined in classical

AI. But the information a human uses to formulate goals may not be

necessary for executing the same acts, maybe not even helpful. This

argument is nicely illustrated in the frame of reference [14, 73]. By

assuming the necessity for a human goal formulation we impose our

own frame of reference upon the agent, and may make representation

of the behavior much more complicated than it may be from the agent’s

perspective.

A common way to introduce this separation between the human’s and

the robot’s frame of reference is to introduce pre-programmed primi-

tives. The set of known primitives creates a space where the human

teacher can easily get an understanding of what the robot is doing,

while the specific controllers can create local information spaces suit-

able for the specific primitive. The use of primitives is further developed

in the following section.

3.4. Learning with behavior primitives

Based on the concepts of behavior, bias, and goal introduced above,

the learning task defined in Equation 10 is here refined. In Section 3.1

it was concluded that λ requires some bias to be able to find a suitable

controller, as illustrated in Figure 3. In the most basic form of LFD, λ
is simply learned by fitting the demonstrated data to a more or less

general functional form, such as a neural network [57] or a rule base

framework [42] which in such cases represents the reduced controller

set ΠP in Figure 3. The use of primitives, which was introduced in

Section 2.1, is fully compatible with this description of learning bias

such that learning consists of matching a demonstration with a pre-

defined primitive. This process is denoted behavior recognition and

can be approached in a number of ways as described below.

The description of LFD given above is valid for demonstrations of be-

haviors that can be repeated by choosing one single primitive. More

complex behaviors demand sequences or combinations of primitives.

For a given robot and class of learning scenarios, the set of primitives

ΠP is normally chosen such that a demonstration may be divided into

segments where each segment can be repeated by choosing the right

primitive. The general LFD process illustrated in Figure 3 is here ex-

tended to include handling of such sequences. Some types of behav-

iors are better described as combinations of several primitives executed

in parallel, e.g. [69]. This organization is common in behavior-based ar-

chitectures, e.g. [27, 58]. However, recognition of primitives executed

in parallel is incredibly complex in the general case. Furthermore, these

systems require a coordination function that integrate motor commands

from parallel primitives. Due to these issues, parallel primitives are less

common in LFD applications and we have therefore chosen to focus

on the purely sequential case.

Let us first look from a post learning perspective at how sequence con-

trol can be described for a robot using a set ΠP of predefined primitives

πp. To include the assignment of parameters for parameterized primi-

tives into the learning, ΠP is in the following regarded as containing all

possible parameterizations of primitives. Control can now be divided

into two steps:

1. Action selection where a function πsel selects a primitive πp ∈
ΠP :

πp = πsel(ηder) (16)

where πsel performs the mapping

πsel : Ider → ΠP (17)

ηder ∈ Ider is a pre-processed or derived version of the original

event history η ∈ Ihist , constructed by an information mapping

function κ [53, p.571], defined in Equation 12.

2. Low-level control using the chosen controller πp to generate an

action uk .

Stepping back to the learning phase, the problem is now reduced to

finding the action selection function πsel using demonstrated data b
pre-processed with the information mapping κ into the derived infor-

mation space Ider (see Figure 4)1. In this way, the dimensionality of the

learning problem is drastically reduced since λ is now selecting suit-

able πsel ∈ Πsel based on the pre-processed trajectory information in

Ider rather than working on the full Ihist and Π spaces. Compare with

Figures 1 and 3.

While the approaches to sequence learning with primitives vary widely,

the process of finding πsel can be divided into three tasks:

1. Behavior segmentation where a demonstration η(i) is divided

into smaller segments, referred to as task segments.

2. Behavior recognition where each segment is associated with

a primitive πp ∈ ΠP .

1 By comparing Equations 16 and 17 with Equations 7 and 8, the primitives
πp may be seen as generalized actions, generated by a controller πsel . Another
interesting analogy can be made between action selection and the correspondence
problem, i.e., the problem of finding the action(s) that corresponds to an observed
event sequence. Viewing the primitives as actions leads to an equivalent problem
formulation for action selection; find the primitive that corresponds to an observed
event sequence.

7 67

PALADYN Journal of Behavioral Robotics

R
B

λ

κ

b

Λ

ПIhist

πsel

selП

πp
П P

derI

bder

Figure 4. An extended version of the LFD process illustrated in Figure 3. Bias
is here introduced into the learning process by restricting Π to a set
of primitives ΠP . Primitives πp are selected by selection function

πsel : Ider → ΠP . Solid lines represent function mappings while the
dashed line represents the evaluation of πsel.

3. Behavior coordination, referring to identification of rules or

switching conditions for how the primitives are to be combined.

Referring to Figure 4, these tasks are realized by the function λ. In prac-

tice, task 1 and 2 are often intertwined. For Task 1, several approaches

exist, for example variance thresholding [46, 51], repeated pattern cor-

relation [49, 75, 76], thresholding mean velocity of joints [34, 65] and

entropy-based segmentation [25]. Auto-associative neural networks

have also been used for segmentation, both by measuring network

reconstruction performance [15] and by identifying bifurcations in the

network attractor dynamics [49, 50]. Calinon and coworkers [24] used

Dynamic Time Warping in combination with Gaussian Mixture Regres-

sion to decompose movement trajectories of a humanoid robot.

Task 2 is commonly seen as a classification problem. For example,

Bentivegna [8] uses a nearest-neighbor classifier on state data to iden-

tify skills in a marble maze and an air hockey game. In both these se-

tups, each primitive is assigned a query point in state space, which is

compared with the current system state. Pook and Ballard [74] present

an approach where sliding windows of data are classified using Learn-

ing Vector Quantization in combination with a k-NN classifier. The com-

plexity of the distance measure is highly dependent on the complexity

of B. For simple behaviors, a Euclidean distance function has been

shown to work well [9]. However, for more complex behaviors, other

measures are necessary. Tani [83, 84] does both recognition of be-

havior primitives and segmentation with extended recurrent neural net-

works that model different behavior primitives depending on the para-

metric bias in the network model. Recognition is done by finding the

optimal parametric bias for an observed sensory-motor sequence. Cali-

non and colleagues use Hidden Markov Models in combination with

Principal Component Analysis to compute the likelihood that the ob-

served data was generated by the model [23, 24].

One approach that addresses the complexity of higher level primitives

can be found in work by Nicolescu [68], where two behaviors are

regarded as being similar if their respective preconditions and goals

match, regardless of their internal differences. Nicolescu utilizes the

postconditions to recognize primitives in demonstrated data, i.e., task 1

and 2 as described above. Recognized primitives are arranged in a be-

havior network and during execution the behaviors’ preconditions in

combination with the network links are used for behavior coordination,

Task 3. Formally, any sequence of recognized primitives can be seen

as an element in a derived information space Ider , and consequently

a behavior network, represented as a set of behavior sequences, con-

stitutes a subspace of that Ider . In this setting, the definition of post-

conditions for each primitive constitutes an information mapping κ from

Ihist to Ider and the preconditions take part in the implementation of the

coordination function πsel. The primitive controller itself is represented

by πp ∈ Πp. Compare with Figure 4.

Demiris and Johnson [31] present a different approach where all prim-

itive controllers are continuously running in parallel, predicting actions

in response to incoming sensor data. The prediction errors are then

used to estimate how well each primitive represents the demonstrated

behavior. This approach is similar to our own method β-comparison,

which is also used for some primitives in the present example, c.f., Sec-

tion 4. Even though theoretically appealing and with strong connections

to biological findings, see [31] for details, direct comparison of pre-

dicted actions become infeasible for complex primitives. The method

presented by Demiris and Johnson, as well as our β-comparison, has

problems capturing the similarity of behaviors that may be executed

in many different ways, leading to the same goal. One way to handle

these issues is to move from a direct comparison of actions in Ihist to

more abstract concepts of actions or events in a derived event history

ηder ∈ Ider . An evaluation of β-comparison and two other methods

for behavior recognition can be found in [15]. In a generalized sense

these methods should be seen as an attempt to create a metric of
imitation performance, as discussed in Section 3.1.

Sometimes, a demonstrated behavior can not be decomposed into

a sequence of known discrete primitives. Several metrics may con-

flict and cause ambiguities in behavior recognition. In these situations,

continuous task representations are preferable since they can better

describe a smooth transition from one metric to another, see for in-

stance [24].

A distributed approach to Task 3 is presented by Maes and Brooks [56].

Global feedback is used, allowing the primitives themselves to learn

suitable activation conditions by correlating particular stimuli with posi-

tive or negative feedback. The feedback functions in combination with

the primitives themselves constitute the coordination function πsel. An-

other approach to behavior coordination is found in the MOSAIC archi-

tecture [39, 40, 86]. MOSAIC utilizes forward modes paired with prim-

itive controllers. Each forward model computes a responsibility signal

as a measure of how well the paired controller can handle the present

situation. When combined with a responsibility predictor this architec-

ture forms a powerful coordination system. MOSAIC is a theoretical

framework but the HAMMER architecture [30, 32], which has been im-

plemented and tested on robots, captures many aspects of MOSAIC.

Both these architectures are put in relation to LFD in our own recent

work [13]. A key aspect of this approach is the pairing of forward mod-

els (predictors) and inverse models (controllers) in a model-free way.

We are analyzing this issue deeper and propose a possible solution

based on the algorithm Predictive Sequence Learning algorithm in other

recent publications [16, 17].

There are several approaches to identify relevant aspects of the task

that do not employ behavior primitives. While we limit the present re-

view to approaches using primitives, the work by Kulic̀ et al. [52] is

worth mentioning even though it does not directly apply behavior prim-

itives. In this approach, demonstrations of movement patterns are en-

coded in Hidden Markov Models and then clustered into groups using

Hierarchical Agglomerative Clustering. Groups are formed incremen-

tally as new demonstrations are added, which makes this approach

display many of the advantages with behavior primitives as described

here. Furthermore, Kulic̀ et al. put forward the advantage of a hierarchi-

cal organization of behavior, a claim we support strongly and discuss

deeper in other work [13].

868

PALADYN Journal of Behavioral Robotics

Adding to the motivations presented above, one important reason for

the use of primitives in LFD is that primitives constitute high level repre-

sentations of the demonstrated behavior. Primitives can be labeled in

meaningful ways, which helps establish a common understanding be-

tween the human teacher and the robot pupil. It is natural for humans to

break down sequences of actions into meaningful sections and adults

appear to agree upon how segmentation should be made [7]. We there-

fore believe that identification and recombination of behavior primitives

is a critical aspect of LFD.

4. Demonstrator

The concepts and theory introduced above are here illustrated with an

experiment in which a Khepera robot [48] is used in an LFD setting. This

experimental setup is on purpose simplified to illustrate how ambigu-

ous even a very simple demonstration may be, and how the proposed

formalism can be used to describe the LFD process.

The Khepera robot has eight infra-red proximity sensors mounted

around the rim of the robot. The limited sensing capabilities have for this

experiment been augmented by an external camera mounted above

the robot arena. The setup can be seen in Figure 5 and an example

image from the top mounted camera can be seen in Figure 6. The

robot is equipped with a gripper and is placed in an environment with

a number of wood blocks and two colored areas located in one side of

the scene.

Figure 5. Experimental setup. In the center is a Khepera robot [48] with a grip-
per that can be raised and lowered. The objects around the scene
are painted wood blocks. Rubber bands have been placed around
the objects to facilitate gripping. A camera has been mounted directly
above the scene, see Figure 6.

The experiment comprises a sequence learning task in which a human

intends to teach a robot to pick up cubes and place them in the blue-

colored corner area. To demonstrate the wanted behavior, the human

tele-operates the robot towards a red cube, grips it, lifts it, moves to the

blue area and drops down the cube. The robot should then be able to

repeat the demonstrated behavior. The reader is referred to Figure 1

which summarizes much of the discussed formalism.

Observation space Y comprises the camera image (Figure 6), data

from the eight proximity sensors, position sensors for gripper and grip-

per arm and an optical barrier detecting objects in the gripper. Ac-

Figure 6. Example image from top mounted camera. A pink tape has been
placed on the Khepera gripper to facilitate recognition of the robot’s
position and orientation.

tion space U comprises the speed of the left and right wheel, and the

speeds of the motors controlling gripper lift motion and gripper close

motion. Sequences ỹk and ũk (Equations 2 and 3) are combined into

history information states ηk ∈ Ihist (Equations 5 and 6). Ihist is

a huge space comprising all possible sensor and action sequences

the robot in principle can experience. Given the task at hand, a more

suitable derived information space Ider is defined. It comprises se-

quences of the following entities derived from Y and U: Object proper-

ties distance, direction, orientation, type, and color where type is

either cube or cylinder. Directions and orientations are given in a coor-

dinate system relative to the robot. Distance and direction to the cen-

troids of the two colored areas are also extracted. Technically, these

entities are extracted from the camera image using a combination of

image analysis tools, including color segmentation, Sobel edge detec-

tion, Hough transform and mathematics morphology. Formally, these

techniques are parts of the κ, defined in Equation 12.

The generation of Ider should be seen as the first of many kinds of

biases that we introduce in order to make the learning task feasible.

This bias depends on the available sensors and actuators and also

on the task at hand. It is clear that the dimensionality of the learning

problem is significantly reduced by replacing the camera image in Ihist

by a small number of object properties.

The demonstrator performs the wanted task by tele-operating the robot

as described above. The resulting recorded data bder ⊂ Ider is a set

of event histories constituting the input to the learning function λ. To

support this process, the universe Π of all possible controllers is re-

duced to a much smaller set Πp that comprises pre-defined high-level

behavior primitives. The following primitives are defined: move_to_ob-
ject, move_to_area, grip, release, lift and put_down. The move_-
to_object primitive takes two parameters color and type, where

color = C ⊆ {red, green, blue, yellow} and type = T ⊆
{cube, cylinder}. The move_to_area primitive takes one argument

color just like move_to_object, but does not have any type parame-

ter. One could of course imagine many other possible parameters for

the these primitives, e.g. position and size, but the included param-

eters suffice for the present example. Referring to Section 3.3, each

parametrization of the move_to_object and move_to_area primitives

is associated with a specific goal GI (Equation 14). As been already

9 69

PALADYN Journal of Behavioral Robotics

mentioned, this is a very efficient way of introducing additional bias in

learning such that complex behaviors can be learned by few or even

a single demonstration. Conceptually, Πp comprises all possible pa-

rameterizations of the primitives.

To keep the example simple, all primitives are hard-coded into the robot,

i.e., both Ider and Πp are defined manually. However, in a realistic set-

ting primitives are often created during a previous learning phase, as

has been shown in for example the work by Saunders et al. [70, 79].

The use of primitives should be seen as a way to reuse knowledge

that may come either from a programmer manually designing the prim-

itive, or from a previous learning phase. Formally, this is described as

a gradual redefinition of Ider and Πp which corresponds to the concept

of scaffolding described above.

To learn a sequence of these primitives, the three steps described in

Section 3.4 are performed. Behavior segmentation and recognition are

executed in one step by continuously matching each primitive against

bder . The recognition method differs between different primitives. For

grip, release, lift and put_down, the start and end positions of the

gripper are used to indicate that the corresponding primitive has

been executed. For move_to_object and move_to_area the behavior

recognition method β − comparison [15] is used. In this approach,

an action vector for each parameterized primitive is computed, creating

a set of hypothesis. Each action vector is then compared to the ob-

served bder creating an error measure for each hypothesis. If the error

remains low while the robot is approaching a specific target object, the

hypotheses is confirmed and a move_to primitive with the correspond-

ing parametrization can be inserted into the recognized sequence.

Each primitive specifies a set of finish conditions, e.g. that the robot

should be within gripping range of a target object for move_to_object
to complete. The end result of the learning process λ is a function

πsel ∈ Πsel that selects an appropriate primitive πp ∈ Πp given the

current event history ηder (Equation 16). In this way, πsel acts as a

sequencer and the actual control of the robot and gripper motion is

done by the currently selected primitive πp.

release

put_down

Finish

grip

move_to_area(C) move_to_area(blue)

lift

move_to_object(red,cube)move_to_object(C,cube)move_to_object(red,T)move_to_object(C,T)

Start

Figure 7. A schematic of the demonstrated sequence going vertically from top
to bottom, where each square represents the execution of a prim-
itive. Alternative interpretations of the demonstrated sequence are
drawn horizontally, with the most general interpretation to the left and
the most specific to the right. C and T are unspecified attributes
representing all, or a subset of, possible values for color and type,
respectively. Dashed lines mark ambiguous steps in the sequence,
that require further information.

Even with the bias introduced by the construction of Ider and by the

pre-defined behavior primitives in Πp a substantial uncertainty, simi-

lar to the one discussed in Section 3.1, remains. This is illustrated in

Figure 7 where alternative interpretations at each step are drawn hor-

izontally and time flows vertically from top to bottom. In the shown

example, the first part of the demonstration may be interpreted in four

ways; move_to_object(C,T), move_to_object(red,T), move_to_ob-
ject(C,cube), move_to(red,cube). The second and third primitives

grip and lift are uniquely identified while move_to_area is subject to

similar ambiguity as move_to_object. Finally, the primitives put_down
and release are uniquely identified. The alternatives for each ambigu-

ity represent generalizations along different feature axes. In Section 3.1

this is described as interpolation or extrapolation of the demonstrated

event histories η. Figure 7 illustrates a subspace of Πsel. With the am-

biguities resolved, through human feedback or other kinds of bias, the

resulting sequence represents an instance of πsel ∈ Πsel as defined

in Equation 17.

Various types of feedback from the human can be applied such that

the ambiguous sequence collapses into a single well defined sequence

of behavior primitives that will enable repetition of the demonstrated

behavior according to the user’s intentions. In the described experi-

ment, the human teacher manually selects the appropriate alternatives

in a dialog system such that the generated πsel will execute the se-

quence žmove_to_object(C,cube), grip, lift, move_to_area(blue),
put_down, release~. The robot is then able to repeat the intended

sequence of primitives and autonomously move cubes of any color to

the blue area.

To sum up, the present example demonstrates how the huge and com-

plex Ihist can be transformed into a significantly smaller and more hu-

man interpretable space Ider . On the controller side, the set of all pos-

sible controllers Π have been reduced by introducing a set of primitives

Πp that can be composed into sequences by Πsel, c.f. Figure 4. A

more detailed description of the experimental setup will be presented

in future work, including a graphical interface in which the human user

is able to give feedback during and after a demonstration, in order to

resolve ambiguities such as the one illustrated in Figure 7.

5. Summary

A formalism for robot behaviors and Learning from Demonstration
(LFD) is presented. Building on terminology from LaValle [53, ch.11],

an agent’s sensory-motor history is conveniently described by an event

history, and a controller maps event histories to actions in action space.

As illustrated in Figure 1, a demonstration of a particular behavior can

be seen as an event history η ∈ b, and the behavior itself as the large

set B of allowed event histories, i.e., all possible ways to realize the

desired behavior. The quality of the learned controller can be judged by

the similarity between B and the realization space R .

The vague and ill-posed meaning of repeating a demonstrated be-

havior is discussed from a machine learning perspective. The concept

of generalization is defined in the framework of event histories and

leads to a discussion of bias in learning. In LFD, bias is essential and

can be introduced before, during, and after demonstration as feedback

from the human teacher. The huge information history space may be

reduced to a derived space, suitable for a limited set of tasks. Behav-

ior primitives are another common way to introduce bias, and are often

associated with specific goals, which are explicitly or implicitly defined

for each primitive. LFD can at a higher level be described as controller

selection. In this context, learning consists of finding and tuning a suit-

able primitive. More complex behaviors can be created by combining

several primitives into sequences. LFD can then be described in three

1070

PALADYN Journal of Behavioral Robotics

steps, behavior segmentation, behavior recognition and behavior
coordination.

When using primitives created during a previous learning phase, learn-

ing can be seen as an evolutionary process where new knowledge is

gained through the use of previous knowledge as bias. Formally, this is

described as a gradual redefinition of Ider , Πp and Πsel which relates

to the concept of scaffolding.

The formalism is applied to a sequence learning task in which the in-

troduced concepts are illustrated with focus on how bias of various

kinds can be used to enable learning from a single demonstration. The

experiment shows how even a simple demonstration contains almost

unavoidable ambiguities that have to be handled one way or another.

In context of the presented formalism, these ambiguities appear clearly

as a transition problem from behavior B ⊂ Ihist to controller π ∈ Π,

or as a controller selection problem in Πsel. This research problem is

believed to be crucial for the development of learning robots and is ad-

dressed in our ongoing research.

The presented work is an attempt to structure and formalize general

principles and assumptions in LFD. Our aim is not to present the sin-

gle best way to talk about behaviors, generalization, goals, and other

LFD related concepts. Rather, we want to point out the importance of

defining these concepts clearly. It is our hope that the presented work

will provide useful insights to the mechanisms involved in LFD and thus

contribute to further development of this powerful and promising area

of robot learning.

Acknowledgments

The authors would like to thank Lars-Erik Janlert for many valuable

comments on this paper, and Steven LaValle for inspiring discussions

about information spaces.

References

[1] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn. Imitation with

ALICE: learning to imitate corresponding actions across dissimilar

embodiments. IEEE Transactions on Systems, Man and Cyber-

netics, Part A: Systems and Humans, 32:482–496, 2002.

[2] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn. Action,

state and effect metrics for robot imitation. In 15th IEEE Interna-

tional Symposium on Robot and Human Interactive Communica-

tion (ROMAN 2006), pages 232–237, Hatfield, September 2006.

[3] R. Amit and M. Mataric̀. Parametric primitives for motor repre-

sentation and control. In Int. Conf. on Robotics and Automation

(ICRA), Washington DC, May 2002.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey

of robot learning from demonstration. Robotics and Autonomous

Systems, 57(5):469–483, May 2009.

[5] R. C. Arkin. Behaviour-Based Robotics. MIT Press, 1998.

[6] P. Bakker and Y. Kuniyoshi. Robot see, robot do: an overview of

robot imitation. In Proceedings of the AISB Workshop on Learning

in Robots and Animals, pages 3–11, Brighton, 1996.

[7] D. Baldwin, A. Andersson, J. Saffran, and M. Meyer. Segmenting

dynamic human action via statistical structure. Cognition, 106(3):

1382–1407, March 2008.

[8] D. C. Bentivegna. Learning from Observation using Primitives.

PhD thesis, College of Computing, Georgia Institute of Technol-

ogy, 2004.

Table 1. Symbol index

Symbol Description Definition

X State space Sec. 2.1
Y Observation space Sec. 2.2
Ỹ Observation history space Sec. 2.3
ỹ ∈ Ỹ Observation history Eq. 2
U Action space Sec. 2.2
Ũ Action history space Sec. 2.3
ũ ∈ Ũ Action history state Eq. 3
h Sensor function Sec. 2.2
f Action function Sec. 2.2
Π Controller space Sec. 3
π ∈ Π Controller Eq. 1, Eq. 7
I Information space Sec. 2.3
e ∈ I Sensory-motor event Sec. 2.3
Ik History information space (up to stage k) Eq. 5
η ∈ Ihist History information state Eq. 4
η0 ∈ Ihist Initial conditions Sec. 2.3
Ihist Information history space (unbound) Eq. 6
B ⊂ Ihist Behavior Sec. 2.5
b ⊂ B Demonstration Sec. 3
R ⊂ Ihist Realization space Sec. 3
λ Learning function Eq. 10
Λ Realization function Eq. 11
Ider Derived information space Sec. 3.2
G ⊂ X Goal (defined in X) Sec. 3.3
GI ⊂ Ihist Goal (defined in Ihist) Sec. 3.3
Πp Set of primitive controllers Sec. 3.4
πp ∈ Πp Primitive controller Eq. 16
πsel Controller selection function Eq. 17
κ Information mapping Eq. 12

[9] D. C. Bentivegna, C. G. Atkeson, and G. Cheng. Learning similar

tasks from observation and practice. In Proceedings of the 2006

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pages 2677–2683, Beijing, China, October 2006.

[10] A. Billard, Y. Epars, G. Cheng, and S. Schaal. Discovering imita-

tion strategies through categorization of multi-dimensional data. In

Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 3, pages 2398–2403 vol.3, 2003.

[11] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng. Dis-

covering optimal imitation strategies. Robotics and Autonomous

Systems, 47(2-3):69–77, June 2004.

[12] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot program-

ming by demonstration. In B. Siciliano and O. Khatib, editors,

Handbook of Robotics. Springer, 2008.

[13] E. A. Billing. Cognition Reversed - Robot Learning from Demon-

stration. PhD thesis, Umeå University, Department of Computing

Science, Umeå, Sweden, December 2009.

[14] E. A. Billing. Cognitive perspectives on robot behavior. In J. Filipe,

A. Fred, and B. Sharp, editors, Proceedings of 2nd International

Conference on Agents and Artificial Intelligence (ICAART), Special

11 71

PALADYN Journal of Behavioral Robotics

Session LAMAS, pages 373–382, Valencia, Spain, January 2010.

[15] E. A. Billing and T. Hellström. Behavior recognition for segmen-

tation of demonstrated tasks. In IEEE SMC International Confer-

ence on Distributed Human-Machine Systems, pages 228 – 234,

Athens, Greece, March 2008.

[16] E. A. Billing, T. Hellström, and L. E. Janlert. Model-free learning

from demonstration. In J. Filipe, A. Fred, and B. Sharp, editors,

Proceedings of 2nd International Conference on Agents and Artifi-

cial Intelligence (ICAART), pages 62–71, Valencia, Spain, January

2010.

[17] E. A. Billing, T. Hellström, and L. E. Janlert. Behavior recogni-

tion for learning from demonstration. In Proceedings of IEEE In-

ternational Conference on Robotics and Automation, Anchorage,

Alaska, May 2010.

[18] C. Breazeal and B. Scassellati. Challanges in building robots that

imitate people. In K. Dautenhahn and C. L. Nehahiv, editors, Imi-

tation in Animals and Artifacts. MIT Press, 2002.

[19] C. Breazeal and B. Scassellati. Infant-like social interactions be-

tween a robot and a human caretaker. Adaptive Behavior, 8(1):

49–74, 1998.

[20] C. Breazeal and B. Scassellati. Robots that imitate humans.

Trends in Cognitive Sciences, 6(11):481–487, November 2002.

[21] R. A. Brooks. New approaches to robotics. Science, 253(13):

1227–1232, 1991.

[22] R. W. Byrne and A. E. Russon. Learning by imitation: a hierarchical

approach. The Journal of Behavioral and Brain Sciences, 16(3),

1998.

[23] S. Calinon and A. Billard. Recognition and reproduction of ges-

tures using a probabilistic framework combining PCA, ICA and

HMM. In Proceedings of the 22nd international conference on

Machine learning, pages 105–112, Bonn, Germany, 2005. ACM.

[24] S. Calinon, F. Guenter, and A. Billard. On learning, representing

and generalizing a task in a humanoid robot. IEEE Transactions

on Systems, Man and Cybernetics, Part B. Special issue on robot

learning by observation, demonstration and imitation, 37(2):286–

298, 2007.

[25] P. Cohen, N. Adams, and H. B. Voting experts: An unsupervised

algorithm for segmenting. Intelligent Data Analysis, 11(6):607–

625, 2007.

[26] A. Cypher, editor. Watch What I Do: Programming by Demonstra-

tion. MIT Press, 1993.

[27] T. S. Dahl. Behavior-Based Learning. PhD thesis, Faculty of En-

gineering, University of Bristol, UK, 2002.

[28] N. Delson and H. West. Robot programming by human demon-

stration: The use of human inconsistency in improving 3D robot

trajectories. In Proceedings of the IEEE/RSJ/GI International Con-

ference on Intelligent Robots and Systems ’94. Advanced Robotic

Systems and the Real World, IROS ’94., volume 2, pages 1248–

1255, Munich, Germany, September 1994.

[29] J. Demiris and G. Hayes. Do robots ape? In Proceedings of the

AAAI Fall Symposium on Socially Intelligent Agents, pages 28–31,

1997.

[30] Y. Demiris and A. Dearden. From motor babbling to hierarchical

learning by imitation: a robot developmental pathway. In Proceed-

ings of the 5th International Workshop on Epigenetic Robotics,

pages 31—37, 2005.

[31] Y. Demiris and M. Johnson. Distributed, predictive perception of

actions: a biologically inspired robotics architecture for imitation

and learning. Connection Science, 15(4):231–243, 2003.

[32] Y. Demiris and B. Khadhouri. Hierarchical attentive multiple mod-

els for execution and recognition of actions. Robotics and Au-

tonomous Systems, 54(5):361–369, May 2006.

[33] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd

Edition). Wiley-Interscience, 2001.

[34] A. Fod, M. Mataric̀, and O. C. Jenkins. Automated derivation

of primitives for movement classification. Autonomous Robots,

pages 39–54, 2002.

[35] C. Giovannangeli and P. Gaussier. Human-Robot interactions as

a cognitive catalyst for the learning of behavioral attractors. In

16th IEEE International Symposium on Robot and Human interac-

tive Communication (RO-MAN 2007), pages 1028–1033, August

2007.

[36] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi. Convergent force

field organized in the frog’s spinal cord. Journal of Neuroscience,

13(2):467–491, 1993.

[37] J. G. Greeno. Special issue on situated action. In Cognitive Sci-

ence, volume 17, pages 1–147. Ablex Publishing Corporation,

Norwood, New Jersey, 1993.

[38] F. Guenter, M. Hersch, S. Calinon, and A. Billard. Reinforce-

ment learning for imitating constrained reaching movements. RSJ

Advanced Robotics, Special Issue on Imitative Robots, 21(13):

1521–1544, 2007.

[39] M. Haruno, D. M. Wolpert, and M. M. Kawato. MOSAIC model

for sensorimotor learning and control. Neural Comput., 13(10):

2201–2220, 2001.

[40] M. Haruno, D. M. Wolpert, and M. Kawato. Hierarchical MOSAIC

for movement generation. In International Congress Series 1250,

pages 575– 590. Elsevier Science B.V., 2003.

[41] T. Hastie, R. Tibshirani, and J. H Friedman. The Elements of Sta-

tistical Learning. Springer, August 2001.

[42] T. Hellström. Teaching a robot to behave like a cockroach. In

Proceedings of the Third International Symposium on Imitation in

Animals and Artifacts in Hatfield UK, pages 54–61, 2005.

[43] T. Hellström, T. Johansson, and O. Ringdahl. Development of an

autonomous forest machine for path tracking. In P. Corke and

S. Sukkariah, editors, Field and Service Robotics - Results of the

5th International Conference FSR, volume 25 of Springer Tracts

in Advanced Robotics, pages 603–614. Springer, 2006.

[44] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical

system modulation for robot learning via kinesthetic demonstra-

tions. Proceedings of IEEE Transactions on Robotics, 24(6):

1463–1467, 2008.

[45] E. Hutchins. Cognition in the Wild. MIT Press, Cambridge, Mas-

sachusetts, 1995.

[46] R. A. Peters II and C. L. Campbell. Robonaut task learning through

teleoperation. In Proceedings of the 2003 IEEE, International Con-

ference on Robotics and Automation, pages 23–27, Taipei, Tai-

wan, September 2003.

[47] L. E. Janlert. Modeling change - the frame problem. In Z. W.

Pylyshyn, editor, The Robot’s Dilemma, pages 1 – 41. Ablex Pub-

lishing, Norwood, New Jersey, 1987.

[48] K-Team. Khepera robot. http://www.k-team.com, 2007.

[49] H. Kadone and Y. Nakamura. Segmentation, memorization,

recognition and abstraction of humanoid motions based on corre-

lations and associative memory. In Proceedings of the 6th IEEE-

RAS International Conference on Humanoid Robots, pages 1–6,

University of Genova, Genova, Italy, 2006.

[50] H. Kadone and Y. Nakamura. Symbolic memory for humanoid

robots using hierarchical bifurcations of attractors in nonmono-

tonic neural networks. In Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2900–

2905, Edmonton, AB, Canada, 2005.

[51] N. Koenig and M. J. Mataric̀. Behavior-Based segmentation of

demonstrated tasks. In International Conference on Development

and Learning (ICDL), Bloomington, USA, May 2006.

[52] D Kulic̀, W Takano, and Y Nakamura. Incremental learning, clus-

1272

PALADYN Journal of Behavioral Robotics

tering and hierarchy formation of whole body motion patterns us-

ing adaptive hidden markov chains. The International Journal of

Robotics Research, 27(7):761–784, July 2008.

[53] S. M. LaValle. Planning Algorithms. Cambridge University Press,

Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[54] H. Lieberman, editor. Your Wish is My Command: Programming

by Example. Morgan Kaufmann, San Francisco, 2001.

[55] L. Ljung. System Identification. Prentice-Hall, Simon & Schuster,

Englewood Cliffs, New Jersey, 1987.

[56] P. Maes and R. A. Brooks. Learning to coordinate behaviors. In

National Conference on Artificial Intelligence (AAAI), pages 796–

802, 1990.

[57] P. Martin and U. Nehmzow. Programming by teaching: Neural

network control in the manchester mobile robot. In Proc. Intelligent

Autonomous Vehicles, Helsinki. Springer Verlag, 1995.

[58] M. J. Mataric̀. Behavior-Based control: Examples from naviga-

tion, learning, and group behavior. Journal of Experimental and

Theoretical Artificial Intelligence, 9(2–3):323–336, 1997.

[59] M. J. Mataric̀. Designing and understanding adaptive group be-

havior. Adaptive Behavior, 4(1):51–80, 1995.

[60] M. J. Mataric̀. Integration of representation into Goal-Driven

Behavior-Based robots. In IEEE Transactions on Robotics and

Automation, volume 8, pages 304–312, 1992.

[61] M. J. Mataric̀ and M. J. Marjanovic. Synthesizing complex behav-

iors by composing simple primitives. In Proceedings of the Eu-

ropean Conference on Artificial Life (ECAL-93), volume 2, pages

698–707, Brussels, Belgium, May 1993.

[62] J. McCarthy and P. J. Hayes. Some philosophical problems from

the standpoint of artificial intelligence. In B. Meltzer and D. Michie,

editors, Machine Intelligence 4, pages 463–502. Edinburgh Uni-

versity Press, 1969.

[63] T. M. Mitchell. The need for biases in learning generalizations.

Technical Report CBM-TR-117, Rutgers Computer Science De-

partment Technical Report, New Brunswick, New Jersey, 1980.

[64] F. A. Mussa-Ivaldi and S. F. Giszter. Vector field approximation: a

computational paradigm for motor control and learning. Biological

cybernetics, 67:479–489, 1992.

[65] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. Ikeuchi. Recognition

and generation of leg primitive motions for dance imitation by a hu-

manoid robot. In Proceedings of 2nd International Symposium on

Adaptive Motion of Animals and Machines, Kyoto, Japan, 2003.

[66] C. L. Nehaniv and K. Dautenhahn. The correspondence problem.

In K. Dautenhahn and C. L. Nehahiv, editors, Imitation in Animals

and Artifacts. MIT Press, 2002.

[67] C. L. Nehaniv and K. Dautenhahn. Of hummingbirds and heli-

copters: An algebraic framework for interdisciplinary studies of

imitation and its applications. In J. Demiris and A. Birk, edi-

tors, Learning Robots: An Interdisciplinary Approach, volume 24,

pages 136–161. World Scientific Press, 2000.

[68] M. Nicolescu. A Framework for Learning from Demonstration,

Generalization and Practice in Human-Robot Domains. PhD the-

sis, University of Southern California, 2003.

[69] A. Olenderski, M. Nicolescu, and S. Louis. Robot learning by

demonstration using forward models of Schema-Based behav-

iors. In Proceedings of International Conference on Informatics

in Control, Automation and Robotics, Barcelona, Spain, 2005.

[70] N. Otero, J. Saunders, K. Dautenhahn, and C. L. Nehaniv. Teach-

ing robot companions: the role of scaffolding and event structur-

ing. Connection Science, 20:111–134, June 2008.

[71] J. Peters and S. Schaal. Policy learning for motor skills. In

Proceedings of 14th International Conference on Neural Informa-

tion Processing (ICONIP 2007), pages 1–10, Berlin, Germany,

November 2007. Springer.

[72] R. Pfeifer and C. Scheier. Sensory-motor coordination: the

metaphor and beyond. Robotics and Autonomous Systems, 20

(2):157–178, June 1997.

[73] R. Pfeifer and C. Scheier. Understanding Intelligence. MIT Press.

Cambrage, Massachusetts, 2001.

[74] P. K. Pook and D. H. Ballard. Recognizing teleoperated manipu-

lations. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 578–585, 1993.

[75] B. Rohrer and S. Hulet. BECCA - a brain emulating cognition and

control architecture. Technical report, Cybernetic Systems Inte-

gration Department, Univeristy of Sandria National Laboratories,

Alberquerque, NM, USA, 2006.

[76] B. Rohrer and S. Hulet. A learning and control approach based

on the human neuromotor system. In Proceedings of Biomedical

Robotics and Biomechatronics, BioRob, 2006.

[77] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-

proach. Prentice Hall, NJ, 1995.

[78] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Using Self-

Imitation to direct learning. In 15th IEEE International Symposium

on Robot and Human Interactive Communication, pages 244–

250, 2006.

[79] J. Saunders, C. L. Nehaniv, K. Dautenhahn, and A. Alissandrakis.

Self-Imitation and environmental scaffolding for robot teaching.

International Journal of Advanced Robotics Systems, 4(1):109–

124, 2007.

[80] B. Scassellati. Imitation and mechanisms of joint attention: A

developmental structure for building social skills on a humanoid

robot. Lecture Notes in Computer Science, 1562:176–195, 1999.

[81] H. A. Simon. The Sciences of the Artificial. MIT Press, Cambridge,

Massachusetts, 1969.

[82] L. A. Suchman. Plans and Situated Actions. PhD thesis, Intelli-

gent Systems Laboratory, Xerox Palo Alto Research Center, USA,

1987.

[83] J. Tani. On the interactions between top-down anticipation and

bottom-up regression. Frontiers in Neurorobotics, 1:2, 2007.

[84] J. Tani and M. Ito. Self-organization of behavioral primitives as

multiple attractor dynamics: A robot experiment. IEEE Trans. on

Systems, Man, and Cybernetics Part A: Systems and Humans,

33(4):481–488, 2003.

[85] D. H. Wolpert and W. G Macready. No free lunch theorems for

optimization. In IEEE Transactions on Evolutionary Computation,

volume 1, pages 67–82, April 1997.

[86] D. M. Wolpert. A unifying computational framework for motor con-

trol and social interaction. Phil. Trans. R. Soc. Lond., B(358):593–

602, March 2003.

[87] D. Wood, J. Bruner, and G. Ross. The role of tutoring in problem

solving. Journal of Child Psychology and Psychiatry, 17:89–100,

1976.

13 73

74

IV

Paper IV

Predictive Learning from Demonstration∗

Erik Billing, Thomas Hellström, and Lars-Erik Janlert

Dept. Computing Science, Umeå University, SE-901 87 Umeå, Sweden
billing@cs.umu.se, thomash@cs.umu.se, and lej@cs.umu.se

www.cs.umu.se/research/robotics

Abstract: A model-free learning algorithm called Predictive Sequence Learning
(PSL) is presented and evaluated in a robot Learning from Demonstration (LFD) set-
ting. PSL is inspired by several functional models of the brain. It constructs sequences
of predictable sensory-motor patterns, without relying on predefined higher-level con-
cepts. The algorithm is demonstrated on a Khepera II robot in four different tasks.
During training, PSL generates a hypothesis library from demonstrated data. The li-
brary is then used to control the robot by continually predicting the next action, based
on the sequence of passed sensor and motor events. In this way, the robot reproduces
the demonstrated behavior. PSL is able to successfully learn and repeat three elemen-
tary tasks, but is unable to repeat a fourth, composed behavior. The results indicate
that PSL is suitable for learning problems up to a certain complexity, while higher
level coordination is required for learning more complex behaviors.

∗ Copyright c© Springer Verlag. All rights reserved. Reprinted, with permission, from J. Filipe, A. Fred,
and B. Sharp (Eds.), Agents and artificial Intelligence: Revised Selected Papers. 2011.

77

78

Predictive Learning from Demonstration

Erik A. Billing, Thomas Hellström, and Lars-Erik Janlert

Department of Computing Science, Umeå University, 901 87 Umeå, Sweden
{billing,thomash,lej}@cs.umu.se

Abstract. A model-free learning algorithm called Predictive Sequence Learning
(PSL) is presented and evaluated in a robot Learning from Demonstration (LFD)
setting. PSL is inspired by several functional models of the brain. It constructs
sequences of predictable sensory-motor patterns, without relying on predefined
higher-level concepts. The algorithm is demonstrated on a Khepera II robot in
four different tasks. During training, PSL generates a hypothesis library from
demonstrated data. The library is then used to control the robot by continually
predicting the next action, based on the sequence of passed sensor and motor
events. In this way, the robot reproduces the demonstrated behavior. PSL is able
to successfully learn and repeat three elementary tasks, but is unable to repeat a
fourth, composed behavior. The results indicate that PSL is suitable for learning
problems up to a certain complexity, while higher level coordination is required
for learning more complex behaviors.

1 Introduction

Recent years have witnessed an increased interest in computational mechanisms that
will allow robots to Learn from Demonstrations (LFD). With this approach, also re-
ferred to as Imitation Learning, the robot learns a behavior from a set of good exam-
ples, demonstrations. The field has identified a number of key problems, commonly
formulated as what to imitate, how to imitate, when to imitate and who to imitate [3].
In the present work, we focus on the first question, referring to which aspects of the
demonstration should be learned and repeated.

Inspiration is taken from several functional models of the brain and prediction is
exploited as a way to learn state definitions. A novel learning algorithm, called Pre-
dictive Sequence Learning (PSL), is here presented and evaluated. PSL is inspired by
S-Learning [42, 43], which has previously been applied to robot learning problems as a
model-free reinforcement learning algorithm [40, 41].

The paper is organized as follows. In Sect. 2 a theoretical background and biological
motivation is given. Section 3 gives a detailed description of the proposed algorithm.
Section 4 describes the experimental setup and results for evaluation of the algorithm.
In Sect. 5, conclusions, limitations and future work are discussed.

2 Motivation

One common approach to identify what in a demonstration that is to be imitated is to
exploit the variability in several demonstrations of the same behavior. Invariants among

J. Filipe, A. Fred, and B. Sharp (Eds.): ICAART 2010, CCIS 129, pp. 186–200, 2011.
c© Springer-Verlag Berlin Heidelberg 2011 79

Predictive Learning from Demonstration 187

the demonstrations are seen as the most relevant and selected as essential components
of the task [3, 17]. Several methods for discovering invariants in demonstrations can
be found in the LFD literature. One method presented by Billard et al. applies a time-
delayed neural network for extraction of relevant features from a manipulation task [4,
5]. A more recent approach uses demonstrations to impose constraints in a dynamical
system, e.g. [16, 25].

While this is a suitable method for many types of tasks, there are also applications
where it is less obvious which aspects of a behavior should be invariant, or if the relevant
aspects of that behavior is captured by the invariants. Since there is no universal method
to determine whether two demonstrations should be seen as manifestations of the same
behavior or two different behaviors [10], it is in most LFD applications up to the teacher
to decide. However, the teacher’s grouping of actions into behaviors may not be useful
for the robot. In the well known imitation framework by Nehaniv and Dautenhahn [34],
it is emphasized that the success of an imitation is observer dependent. The consequence
of observer dependence when it comes to interpreting sequences of actions has been
further illustrated with Pfeifer and Scheier’s argument about the frame of reference
[35, 36], and is also reflected in Simon’s parable with the ant [45]. A longer discussion
related to these issues can be found in [6].

Pfeifer and Scheier promotes the use of a low level specification [36], and specifi-
cally the sensory-motor space I = U × Y , where U and Y denotes the action space
and observation space, respectively. Representations created directly in I prevents the
robot from having memory, which has obvious limitations. However, systems with no
or very limited memory capabilities has still reached great success within the robotics
community through the works by Rodney Brooks, e.g., [12–15], and the development
of the reactive and behavior based control paradigms, e.g., [1]. By extending the def-
inition of I such that it captures a certain amount of temporal structure, the memory
limitation can be removed. Such a temporally extended sensory-motor space is denoted
history information space Iτ = I0 × I1 × I2 × . . . × Iτ , where τ denotes the tempo-
ral extension of I [10]. With a large enough τ , Iτ can model any behavior. However,
a large τ leads to an explosion of the number of possible states, and the robot has to
generalize such that it can act even though the present state has not appeared during
training.

In the present work, we present a learning method that is not based on finding invari-
ants among several demonstrations of, what the teacher understands to be “the same
behavior”. Taking inspiration from recent models of the brain where prediction plays a
central role, e.g. [22, 23, 27, 32], we approach the question of what to imitate by the
use of prediction.

2.1 Functional Models of Cortex

During the last two decades a growing body of research has proposed computational
models that aim to capture different aspects of human brain function, specifically the
cortex. This research includes models of perception, e.g., Riesenhuber and Poggio’s
hierarchical model [38] which has inspired several more recent perceptual models [23,
32, 37], models of motor control [26, 42, 46–48] and learning [22]. In 2004, this field
reached a larger audience with the release of Jeff Hawkins’s book On Intelligence [28].

80

188 E.A. Billing, T. Hellström, and L.-E. Janlert

With the ambition to present a unified theory of the brain, the book describes cortex as
a hierarchical memory system and promotes the idea of a common cortical algorithm.
Hawkins’s theory of cortical function, referred to as the Memory-Prediction framework,
describes the brain as a prediction system. Intelligence is, in this view, more about
applying memories in order to predict the future, than it is about computing a response
to a stimulus.

A core issue related to the idea of a common cortical algorithm is what sort of bias
the brain uses. One answer is that the body has a large number of reward systems.
These systems are activated when we eat, laugh or make love, activities that through
evolution have proved to be important for survival. However, these reward systems are
not enough. The brain also needs to store the knowledge of how to activate these reward
systems.

In this context, prediction appears to be critical for learning. The ability to predict the
future allows the agent to foresee the consequences of its actions and in the long term
how to reach a certain goal. However, prediction also plays an even more fundamental
role by providing information about how well a certain model of the world correlates
with reality.

This argument is supported not only by Hawkins’s work, but by a large body of re-
search investigating the computational aspects of the brain [8]. It has been proposed that
the central nervous system (CNS) simulates aspects of the sensorimotor loop [29, 31,
33, 47]. This involves a modular view of the CNS, where each module implements one
forward model and one inverse model. The forward model predicts the sensory conse-
quences of a motor command, while the inverse model calculates the motor command
that, in the current state, leads to the goal [46]. Each module works under a certain
context or bias, i.e., assumptions about the world which are necessary for the module’s
actions to be successful. One purpose of the forward model is to create an estimate of
how well the present situation corresponds to these assumptions. If the prediction error
is low the situation is familiar. However, if the prediction error is high, the situation
does not correspond to the module’s context and actions produced by the inverse model
may be inappropriate.

These findings have inspired recent research on robot perception and control. One
example is the rehearse, predict, observe, reinforce decomposition proposed by [18,
20, 44] which adapts the view of perception and action as two aspects of a single pro-
cess. Hierarchical representations following this decomposition have also been tested
in an LFD setting [19] where the robot successfully learns sequences of actions from
observation. In work parallel to this, we also investigates PSL as an algorithm for be-
havior recognition [11], exploring the possibilities to use PSL both as a forward and
an inverse model. The present work should be seen as a further investigation of these
theories applied to robots, with focus to learning with minimal bias.

2.2 Sequence Learning

PSL is inspired by S-Learning, a dynamic temporal difference (TD) algorithm presented
by Rohrer and Hulet, [42, 43]. S-Learning builds sequences of passed events which may
be used to predict future events, and in contrast to most other TD algorithms it can base
its predictions on many previous states.

81

Predictive Learning from Demonstration 189

S-Learning can be seen as a variable order Markov model (VMM) and we have
observed that it is very similar to the well known compression algorithm LZ78 [49].
This coincidence is not that surprising considering the close relationship between loss-
less compression and prediction [2]. In principle, any lossless compression algorithm
could be used for prediction, and vice verse [21].

S-Learning was originally developed to capture the discrete episodic properties ob-
served in many types of human motor behavior [39]. Inspiration is taken from the
Hierarchical Temporal Memory algorithm [24], with focus on introducing as few as-
sumptions into learning as possible. More recently, it has been applied as a model-free
reinforcement learning algorithm for both simulated and physical robots [40, 41]. We
have also evaluated S-Learning as an algorithm for behavior recognition [9]. However,
to our knowledge it has never been used as a control algorithm for LFD.

The model-free design of S-Learning, together with its focus on sequential data and
its connections to human motor control makes S-Learning very interesting for further
investigation as a method for robot learning. With the ambition to increase the focus on
prediction, and propose a model that automatically can detect when it is consistent with
the world, PSL was designed.

3 Predictive Sequence Learning

PSL is trained on an event sequence η = (e1, e2, . . . , et), where each event e is a
member of an alphabet

∑
. η is defined up to the current time t from where the next

event et+1 is to be predicted.
PSL stores its knowledge as a set of hypotheses, known as a hypothesis library

H . A hypothesis h ∈ H expresses a dependence between an event sequence X =
(et−n, et−n+1, . . . , et) and a target event I = et+1:

h : X ⇒ I (1)

Xh is referred to as the body of h and Ih denotes the head. Each h is associated with a
confidence c reflecting the conditional probability P (I|X). For a given η, c is defined
as c (X ⇒ I) = s (X, I) /s (X), where the support s (X) describes the proportion of
transactions in η that contains X and (X, I) denotes the concatenation of X , and I .
A transaction is defined as a sub-sequence of the same size as X . The length of h,
denoted |h|, is defined as the number of elements in Xh. Hypotheses are also referred
to as states, since a hypothesis of length |h| corresponds to VMM state of order |h|.

3.1 Detailed Description of PSL

Let the library H be an empty set of hypotheses. During learning, described in Alg. 1,
PSL tries to predict the future event et+1, based on the observed event sequence η.

If it fails to predict the future state, a new hypothesis hnew is created and added to H .
hnew is one element longer than the longest matching hypothesis previously existing in
H . In this way, PSL learns only when it fails to predict.

For example, consider the event sequence η = ABCCABCCA. Let t = 1. PSL will
search for a hypothesis with a body matching A. Initially H is empty and consequently

82

190 E.A. Billing, T. Hellström, and L.-E. Janlert

Algorithm 1. Predictive Sequence Learning (PSL)

Require: an event sequence η = (e1, e2, . . . , en)

1: t← 1
2: H ← ∅
3: M ← {

h ∈ H | Xh =
(
et−|h|+1, et−|h|+2, . . . , et

)}

4: if M = ∅ then
5: let hnew : (et)⇒ et+1

6: add hnew to H
7: goto 20
8: end if
9: M̂ ← {h ∈M | |h| ≥ |h′| for all h′ ∈M}

10: let hmax ∈
{

h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂
}

11: if et+1 �= Ihmax then
12: let hc be the longest hypothesis {h ∈M | Ih = et+1}
13: if hc = null then
14: let hnew : (et)⇒ et+1

15: else
16: let hnew :

(
et−|hc|, et−|hc|+1, . . . , et

)⇒ et+1

17: end if
18: add hnew to H
19: end if
20: update the confidence for hmax and hcorrect as described in Sect. 3
21: t← t + 1
22: if t < n then
23: goto 2
24: end if

PSL will create a new hypothesis (A) ⇒ B which is added to H . The same procedure
will be executed at t = 2 and t = 3 so that H = {(A)⇒ B; (B)⇒ C; (C)⇒ C}. At
t = 4, PSL will find a matching hypothesis hmax : (C) ⇒ C producing the wrong
prediction C. Consequently, a new hypothesis (C) ⇒ A is added to H . The predictions
at t = 5 and t = 6 will be successful while h : (C) ⇒ A will be selected at t = 7
and produce the wrong prediction. As a consequence, PSL will create a new hypothesis
hnew : (B, C) ⇒ C. Source code from the implementation used in the present work is
available online [7].

3.2 Making Predictions

After, or during, learning, PSL can be used to make predictions based on the sequence
of passed events η = (e1, e2, . . . , et). Since PSL continuously makes predictions during
learning, this procedure is very similar to the learning algorithm (Alg. 1). The prediction
procedure is described in Alg. 2.

For prediction of a suite of future events, êt can be added to η to create η′. Then
repeat the procedure described in Alg. 2 using η′ as event history.

83

Predictive Learning from Demonstration 191

Algorithm 2. Making predictions using PSL

Require: an event sequence η = (e1, e2, . . . , et−1)
Require: the trained library H =

(
h1, h2, . . . , h|H|

)

1: M ← {
h ∈ H | Xh =

(
et−|h|, et−|h|+1, . . . , et−1

)}

2: M̂ ← {h ∈M | |h| ≥ |h′| for all h′ ∈M}
3: let hmax ∈

{
h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂

}

4: return the prediction êt = Ihmax

3.3 Differences and Similarities between PSL and S-Learning

Like PSL, S-Learning is trained on an event sequence η. However, S-Learning does
not produce hypotheses. Instead, knowledge is represented as Sequences φ, stored in
a sequence library κ [43]. φ does not describe a relation between a body and a head,
like hypotheses do. Instead, φ describes a plain sequence of elements e ∈ η. During
learning, sequences are “grown” each time a matching pattern for that sequence appears
in the training data. Common patterns in η produce long sequences in κ. When S-
Learning is used to predict the next event, the beginning of each φ ∈ κ is matched to
the end of η. The sequence producing the longest match is selected as a winner, and the
end of the winning sequence is used to predict future events.

One problem with this approach, observed during our previous work with S-Learning
[9], is that new, longer sequences, are created even though the existing sequence already
has Markov property, meaning that it can predict the next element optimally. To prevent
the model from getting unreasonably large, S-Learning implements a maximum se-
quence length m. As a result, κ becomes unnecessarily large, even when m is relatively
low. More importantly, by setting the maximum sequence length m, a task-dependent
modeling parameter is introduced, which may limit S-Learning’s ability to model η.

PSL was designed to alleviate the problems with S-Learning. Since PSL learns only
when it fails to predict, it is less prune to be overtrained and can employ an unlimited
maximum sequence length without exploding the library size.

4 Evaluation

The PSL algorithm was tested on a Khepera II miniature robot [30]. In the first eval-
uation (Sect. 4.1), the performance of PSL on a playful LFD task is demonstrated. In
a second experiment (Sect. 4.2), the prediction performance during training of PSL
is compared to the performance of S-Learning, using recorded sensor and motor data
from the robot. During both experiments, the robot is given limited sensing abilities
using only its eight infrared proximity sensors mounted around its sides.

One important issue, promoted both by Rohrer et al. [40, 41] and ourselves [10], is
the ability to learn even with limited prior knowledge of what is to be learned. Prior
knowledge is information intentionally introduced into the system to support learning,
often referred to as ontological bias or design bias [10]. Examples of common design
biases are pre-defined state specifications, pre-processing of sensor data, the size of a

84

192 E.A. Billing, T. Hellström, and L.-E. Janlert

neural network or the length of a temporal window. While design biases help in learn-
ing, they also limit the range of behaviors a robot can learn. A system implementing
large amounts of design bias will to a larger extent base its decisions not on its own ex-
perience, but on knowledge of the programmer designing the learning algorithm, mak-
ing it hard to determine what the system has actually learned.

In addition to design bias, there are many limitations and constraints introduced by
other means, e.g., by the size and shape of the robot including its sensing and action
capabilities, structure of the environment and performance limitations of the computer
used. These kinds of limitations are referred to as pragmatical bias [10]. We generally
try to limit the amount of ontological bias, while pragmatical bias should be exploited
by the learning algorithm to find useful patterns.

In the present experiments, the robot has no previous knowledge about its surround-
ings or itself. The only obvious design bias is the thresholding of proximity sensors into
three levels, far, medium and close, corresponding to distances of a few centimeters.
This thresholding was introduced to decrease the size of the observation space Y , limit-
ing the amount of training required. An observation y ∈ Y is defined as the combination
of the eight proximity sensors, producing a total of 38 possible observations.

An action u ∈ U is defined as the combination of the speed commands sent to the
two motors. The Khepera II robot has 256 possible speeds for each wheel, producing an
action space U of 2562 possible actions. However, only a small fraction of these were
used during demonstration.

The event sequence is built up by alternating sensor and action events, η =
(u1, y1, u2, y2 . . . , uk, yk). k is here used to denote the current stage, rather than the
current position in η denoted by t. Even though events is categorized into observations
and actions, PSL makes no distinction between these two types of events. From the
perspective of the algorithm, all events et ∈

∑
are discrete entities with no predefined

relations, where
∑

= Y ∪ U .
In each stage k, PSL is used to predict the next event, given η. Since the last element

of η is an observation, PSL will predict an action uk ∈ U , leading to the observation
yk ∈ Y . uk and yk are appended to η, transforming stage k to k + 1. This alternating
use of observations and actions was adopted from S-Learning [42]. A stage frequency
of 10 Hz was used, producing one observation and one action every 0.1 seconds.

4.1 Demonstration and Repetition

To evaluate the performance of PSL on an LFD problem, four tasks are defined and
demonstrated using the Khepera II robot. Task 1 involves the robot moving forward in
a corridor approaching an object (cylindrical wood block). When the robot gets close
to the object, it should stop and wait for the human teacher to “load” the object, i.e.,
place it upon the robot. After loading, the robot turns around and goes back along the
corridor. Task 2 involves general corridor driving, taking turns in the right way without
hitting the walls and so on. Task 3 constitutes the “unloading” procedure, where the
robot stops in a corner and waits for the teacher to remove the object and place it to
the right of the robot. Then the robot turns and pushes the cylinder straight forward
for about 10 centimeters, backs away and turns to go for another object. Task 4 is the
combination of the three previous tasks. The sequence of actions expected by the robot

85

Predictive Learning from Demonstration 193

wait for loading,
then turn and go back

turnstart

unload

push object

Fig. 1. Schematic overview of the composed behavior (Task 4). Light gray rectangles mark walls,
dark gray circles mark the objects and dashed circles mark a number of key positions for the
robot. See text for details.

is illustrated in Fig. 1. The robot starts by driving upwards in the figure, following the
dashed line. until it reaches the object at the loading position. After loading, the robot
turns around and follows the dashed line back until it reaches the unload position. When
the cylinder has been unloaded (placed to the left of the robot), the robot turns and
pushes the object. Finally, it backs away from the pile and awaits further instructions.
The experimental setup can be seen in Fig. 2. Even though the setup was roughly the
same in all experiments, the starting positions and exact placement of the walls varied
between demonstration and repetition.

All tasks capture a certain amount of temporal structure. One example is the turning
after loading the object in Task 1. Exactly the same pattern of sensor and motor data
will appear before, as well as after, turning. However, two different sequences of actions
is expected. Specifically, after the teacher has taken the cylinder to place it on the robot,
only the sensors on the robot’s sides are activated. The same sensor pattern appears
directly after the robot has completed the 180 degree turn, before it starts to move
back along the corridor. Furthermore, the teacher does not act instantly. After placing
the object on the robot, one or two seconds passed before the teacher issued a turning
command, making it more difficult for the learning algorithm to find the connection
between the events. Even Task 2 which is often seen as a typical reactive behavior is, due
to the heavy thresholding of sensor data, temporally demanding. Even longer temporal
structures can be found in Task 3, where the robot must push the object and remember
for how long the object is to be pushed. This distance was not controlled in any way,
making different demonstrations of the same task containing slightly conflicting data.

After training, the robot was able to repeat Task 1, 2 and 3 successfully. For Task 1,
seven demonstrations were used for a total of about 2.6 min. Task 2 was demonstrated

86

194 E.A. Billing, T. Hellström, and L.-E. Janlert

Fig. 2. Experimental setup

for about 8.7 min and Task 3 was demonstrated nine times, in total 4.6 min. The robot
made occasional mistakes in all three tasks, reaching situations where it had no training
data. In these situations it sometimes needed help to be able to complete the task. How-
ever, the number of mistakes clearly decreased with increased training, and mistakes
made by the teacher during training often helped the robot to recover from mistakes
during repetition.

For Task 4, the demonstrations from all three partial tasks were used, plus a single
2 min demonstration of the entire Task 4. Even after extensive training, resulting in
almost 40 000 hypotheses in library, the robot was unable to repeat the complete be-
havior without frequent mistakes. Knowledge from the different sub-tasks was clearly
interfering, causing the robot to stop and wait for unloading when it was supposed to
turn, turning when it was supposed to follow the wall and so on. Detailed results for all
four tasks can be found in Table 1.

PSL was trained until it could predict about 98% of the demonstrated data correctly.
It would be possible to train it until it reproduces all events correctly, but this takes
time and initial experiments showed that it did not affect the imitation performance
significantly.

4.2 Comparison between S-Learning and PSL

In Sect. 3.3, a number of motivations for the design of PSL were given, in relation to S-
Learning. One such motivation was the ability to learn and increase the model size only

87

Predictive Learning from Demonstration 195

Table 1. Detailed statistics on the four evaluation tasks. Training events is the number of sensor
and motor events in demonstrated data. Lib. size is the number of hypotheses in library after
training. Avg. |h| is the average hypothesis length after training.

Task Training events Library size Avg. |h|
Task 1 3102 4049 9.81
Task 2 10419 30517 16
Task 3 5518 8797 11
Task 4 26476 38029 15

when necessary. S-Learning always learns and creates new sequences for all common
events, while PSL only learns when prediction fails. However, it should be pointed out
that even though S-Learning never stops to learn unless an explicit limit on sequence
length is introduced, it quickly reduces the rate at which new sequences are created in
domains where it already has extensive knowledge.

To evaluate the effect of these differences between PSL and S-Learning, prediction
performance and library size were measured during training in three test cases. Case 1
contained a demonstration of the loading procedure (Task 1) used in the LFD evaluation,
Sect. 4.1. During the demonstration, the procedure was repeated seven times for a total of
about 150 seconds (3000 sensor and motor events). Case 2 encapsulated the whole com-
posed behavior (Task 4) used in LFD evaluation. The behavior was demonstrated once
for 120 seconds (2400 events). Case 3 constituted 200 seconds of synthetic data, describ-
ing a 0.1 Hz sinus wave discretized with a temporal resolution of 20 Hz and an amplitude
resolution of 0.1 (resulting in 20 discrete levels). The 4000 elements long data sequence
created a clean repetitive pattern with minor fluctuations due to sampling variations.

In addition to PSL and S-Learning, a first order Markov model (1MM) was included
in the tests. The Markov model can obviously not learn the pattern in any of the three
test cases perfectly, since there is no direct mapping et ⇒ et+1 for many events. Hence,
the performance of 1MM should be seen only as reference results.

The results from the three test cases can be seen in Fig. 3. The upper part of each plot
show accumulated training error over the demonstration while lower parts show model
growth (number of hypotheses in library). Since the Markov model does not have a
library, the number of edges in the Markov graph is shown, which best corresponds to
sequences or hypotheses in S-Learning and PSL, respectively.

5 Description

A novel robot learning algorithm called Predictive Sequence Learning (PSL) is pre-
sented and evaluated in an LFD setting. PSL is both parameter-free and model-free in
the sense that no ontological information about the robot or conditions in the world is
pre-defined in the system. Instead, PSL creates a state space (hypothesis library) in or-
der to predict the demonstrated data optimally. This state space can thereafter be used
to control the robot such that it repeats the demonstrated behavior.

In contrast to many other LFD algorithms, PSL does not build representations
from invariants among several demonstrations that a human teacher considers to be

88

196 E.A. Billing, T. Hellström, and L.-E. Janlert

0

500

1000

er
ro

r c
ou

nt

PSL
S-Learning
1MM

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

time (s)

lib
ra

ry
 s

iz
e

Ca
se

 3
 -

Si
nu

s
w

av
e

Ca
se

 1
 -

Lo
ad

in
g

be
ha

vi
or

Ca
se

 2
 -

Co
m

po
se

d
be

ha
vi

or

0

500

1000

er
ro

r c
ou

nt

PSL
S-Learning
1MM

0 50 100 150
0

200

400

600

800

time (s)

lib
ra

ry
 s

iz
e

0

500

1000

er
ro

r c
ou

nt

PSL
S-Learning
1MM

0 20 40 60 80 100 120
0

200

400

600

time (s)

lib
ra

ry
 s

iz
e

Fig. 3. Training results for all three test cases. See Sect. 4.2 for details.

89

Predictive Learning from Demonstration 197

“the same behavior”. All knowledge, from one or several demonstrations, is stored as
hypotheses in the library. PSL treats inconsistencies in these demonstrations by generat-
ing longer hypotheses that will allow it to make the correct predictions. In this way, the
ambiguous definitions of behavior is avoided and control is seen purely as a prediction
problem.

In the prediction performance comparison, PSL produces significantly smaller li-
braries than S-Learning on all three data sets. The difference is particularly large in
Case 3 (Fig. 3), where both algorithms learn to predict the data almost perfectly. In this
situation, S-Learning continues to create new sequences, while PSL does not.

In Case 3, PSL also shows the clearly fastest learning rates (least accumulated er-
rors). The reason can be found in that PSL learns on each event where it fails to predict,
while S-Learning learns based on sequence length. When the model grows, S-Learning
decreases its learning rate even though the performance is still low. In contrast, the
learning rate of PSL is always proportional to performance, which can also be seen in
the plots for all three test cases (Fig. 3). However, even though PSL commits less ac-
cumulated errors than S-Learning in all three tests, the performance difference in Case
1 and 2 is small and how these results generalize to other kinds of data is still an open
question.

In the demonstration-repetition evaluation, tasks 1, 2 and 3 were repeated correctly.
Even though the robot made occasional mistakes, the imitation performance clearly
increased with more demonstrations. However, in Task 4, which was a combination
of the three first tasks, an opposite pattern could be observed. Despite the fact that
PSL was still able to predict demonstrated data almost perfectly, knowledge from the
three elementary tasks clearly interfered. The reason for this interference is that Task
4 requires much longer temporal dynamics than any of the elementary tasks did when
learned separately.

One example of how this knowledge interference is manifested is the turning versus
unloading. When the robot approaches the position marked as turn in Fig. 1, coming
from the left and is supposed to take a right turn, it no longer sees the right wall behind
it. Consequently, the situation looks identical to that of unloading. When the robot is
to unload, it goes downward in Fig. 1 (position unload) but instead of turning it must
wait for the cylinder to be placed to its right side. To make the right prediction, PSL
has to base its decision on information relatively far back in the event history. Even
though PSL has no problem to build a sufficiently large model from training data, the
large temporal window produces a combinatorial explosion and the chance of the right
patterns reappearing during repetition is small. As a result, PSL decreases the temporal
window (i.e., uses shorter hypotheses), and the two situations become inseparable.

5.1 Conclusions and Future Work

The results show that the proposed algorithm is feasible for LFD problems up to a
certain complexity. PSL implements very few assumptions of what is to be learned and
is therefore likely to be applicable to a wide range of problems.

However, PSL also shows clear limitations when the learning problem increases and
longer temporal dynamics is required. PSL is subject to combinatorial explosion and
the amount of required training data increases exponentially with problem complexity.

90

198 E.A. Billing, T. Hellström, and L.-E. Janlert

In these situations, some higher-level coordination is clearly necessary. One possible
solution is to place PSL as a module in a hierarchical system. PSL learns both to predict
sensor data as a response to action (forward model) and to select actions based on the
current state (inverse model). In the present work, PSL is viewed purely as a controller
and the forward model is consequently not considered. However, in work parallel to
this, we show that PSL can also be used as an algorithm for behavior recognition [11],
i.e., as a predictor of sensor values. A big advantage of using PSL for both control and
behavior recognition is that the forward and inverse computations are in fact based on
the same model, i.e., the PSL library. This approach has several theoretical connections
to the view of human perception and control as two heavily intertwined processes, as
discussed in Section 2.1.

The present work should be seen as one step towards a hierarchical control architec-
ture that can learn and coordinate itself, based on the PSL algorithm. The model-free
design of PSL introduces very few assumptions into learning, and should constitute a
good basis for many types of learning and control problems. Integrating PSL as both
forward and inverse model to achieve a two-layer modular control system, is the next
step in this process and will be part of our future work.

Acknowledgements

We would like to thank Brandon Rohrer at Sandia National Laboratories and Christian
Balkenius at Lund University for valuable input to this work.

References

1. Arkin, R.C.: Behaviour-Based Robotics. MIT Press, Cambridge (1998)
2. Begleiter, R., Yona, G.: On prediction using variable order markov models. Journal of Arti-

ficial Intelligence Research 22, 385–421 (2004)
3. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In:

Siciliano, B., Khatib, O. (eds.) Handbook of Robotics. Springer, Heidelberg (2008)
4. Billard, A., Epars, Y., Cheng, G., Schaal, S.: Discovering imitation strategies through cate-

gorization of multi-dimensional data. In: Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 3, pp. 2398–2403 (2003)

5. Billard, A., Mataric, M.J.: Learning human arm movements by imitation: Evaluation of a
biologically inspired connectionist architecture. Robotics and Autonomous Systems 37(2-
3), 145–160 (2001)

6. Billing, E.A.: Representing behavior - distributed theories in a context of robotics. Technical
report, UMINF 0725, Department of Computing Science, Ume University (2007)

7. Billing, E.A.: Cognition reversed (2009), http://www.cognitionreversed.com
8. Billing, E.A.: Cognition Reversed - Robot Learning from Demonstration. PhD thesis, Ume

University, Department of Computing Science, Ume, Sweden (December 2009)
9. Billing, E.A., Hellström, T.: Behavior recognition for segmentation of demonstrated tasks.

In: IEEE SMC International Conference on Distributed Human-Machine Systems, Athens,
Greece, pp. 228–234 (March 2008)

10. Billing, E.A., Hellström, T.: A formalism for learning from demonstration. Paladyn: Journal
of Behavioral Robotics 1(1), 1–13 (2010)

91

Predictive Learning from Demonstration 199

11. Billing, E.A., Hellström, T., Janlert, L.E.: Behavior recognition for learning from demon-
stration. In: Proceedings of IEEE International Conference on Robotics and Automation,
Anchorage, Alaska (May 2010)

12. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation RA-2 1, 14–23 (1986)

13. Brooks, R.A.: Elephants don’t play chess. Robotics and Autonomous Systems 6, 3–15 (1990)
14. Brooks, R.A.: Intelligence without reason. In: Proceedings of 1991 Int. Joint Conf. on Arti-

ficial Intelligence, pp. 569–595 (1991)
15. Brooks, R.A.: New approaches to robotics. Science 253(13), 1227–1232 (1991)
16. Calinon, S., Guenter, F., Billard, A.: On learning, representing and generalizing a task in a

humanoid robot. IEEE Transactions on Systems, Man and Cybernetics, Part B. Special Issue
on Robot Learning by Observation, Demonstration and Imitation 37(2), 286–298 (2007)

17. Delson, N., West, H.: Robot programming by human demonstration: The use of human in-
consistency in improving 3D robot trajectories. In: Proceedings of the IEEE/RSJ/GI Interna-
tional Conference on Intelligent Robots and Systems 1994. Advanced Robotic Systems and
the Real World, IROS 1994, Munich, Germany, vol. 2, pp. 1248–1255 (September 1994)

18. Demiris, J., Hayes, G.R.: Imitation as a dual-route process featuring predictive and learning
components: a biologically plausible computational model. In: Imitation in Animals and
Artifacts, pp. 327–361. MIT Press, Cambridge (2002)

19. Demiris, Y., Johnson, M.: Distributed, predictive perception of actions: a biologically in-
spired robotics architecture for imitation and learning. Connection Science 15(4), 231–243
(2003)

20. Demiris, Y., Simmons, G.: Perceiving the unusual: Temporal properties of hierarchical motor
representations for action perception. Neural Networks 19(3), 272–284 (2006)

21. Feder, M., Merhav, N.: Relations between entropy and error probability. IEEE Transactions
on Information Theory 40(1), 259–266 (1994)

22. Friston, K.J.: Learning and inference in the brain. Neural Networks: The Official Journal of
the International Neural Network Society 16(9), 1325–1352 (2003) PMID: 14622888

23. George, D.: How the Brain might work: A Hierarchical and Temporal Model for Learn-
ing and Recognition. PhD thesis, Stanford University, Department of Electrical Engineering
(2008)

24. George, D., Hawkins, J.: A hierarchical bayesian model of invariant pattern recognition in the
visual cortex. In: Proceedings of IEEE International Joint Conference on Neural Networks
(IJCNN 2005), vol. 3, pp. 1812–1817 (2005)

25. Guenter, F., Hersch, M., Calinon, S., Billard, A.: Reinforcement learning for imitating
constrained reaching movements. RSJ Advanced Robotics, Special Issue on Imitative
Robots 21(13), 1521–1544 (2007)

26. Haruno, M., Wolpert, D.M., Kawato, M.: Hierarchical MOSAIC for movement generation.
In: International Congress Series, vol. 1250, pp. 575–590. Elsevier Science B.V., Amsterdam
(2003)

27. Haruno, M., Wolpert, D.M., Kawato, M.M.: MOSAIC model for sensorimotor learning and
control. Neural Comput. 13(10), 2201–2220 (2001)

28. Hawkins, J., Blakeslee, S.: On Intelligence. Times Books (2002)
29. Jordan, M., Rumelhart, D.: Forward models: Supervised learning with a distal teacher. Cog-

nitive Science: A Multidisciplinary Journal 16(3), 307–354 (1992)
30. K-Team. Khepera robot (2007), http://www.k-team.com
31. Kawato, M., Furukawa, K., Suzuki, R.: A hierarchical neural-network model for control

and learning of voluntary movement. Biological Cybernetics 57(3), 169–185 (1987) PMID:
3676355

32. Lee, T.S., Mumford, D.: Hierarchical bayesian inference in the visual cortex. J. Opt. Soc.
Am. A Opt. Image Sci. Vis. 20(7), 1434–1448 (2003)

92

200 E.A. Billing, T. Hellström, and L.-E. Janlert

33. Miall, R.C., Wolpert, D.M.: Forward models for physiological motor control. Neural
Netw. 9(8), 1265–1279 (1996)

34. Nehaniv, C.L., Dautenhahn, K.: Of hummingbirds and helicopters: An algebraic framework
for interdisciplinary studies of imitation and its applications. In: Demiris, J., Birk, A. (eds.)
Learning Robots: An Interdisciplinary Approach, vol. 24, pp. 136–161. World Scientific
Press, Singapore (2000)

35. Pfeifer, R., Scheier, C.: Sensory-motor coordination: the metaphor and beyond. Robotics and
Autonomous Systems 20(2), 157–178 (1997)

36. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2001)
37. Poggio, T., Bizzi, E.: Generalization in vision and motor control. Nature 431(7010), 768–774

(2004)
38. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature

Neuroscience 2(11), 1019–1025 (1999) PMID: 10526343
39. Rohrer, B.: S-Learning: a biomimetic algorithm for learning, memory, and control in robots.

In: CNE apos;07. 3rd International IEEE/EMBS Conference on Natural Engineering, Kohala
Coast, Hawaii, pp. 148–151 (2007)

40. Rohrer, B.: S-learning: A model-free, case-based algorithm for robot learning and control.
In: Eighth International Conference on Case-Based Reasoning, Seattle Washington (2009)

41. Rohrer, B., Bernard, M., Morrow, J.D., Rothganger, F., Xavier, P.: Model-free learning and
control in a mobile robot. In: Fifth International Conference on Natural Computation, Tian-
jin, China (2009)

42. Rohrer, B., Hulet, S.: BECCA - a brain emulating cognition and control architecture. Techni-
cal report, Cybernetic Systems Integration Department, Univeristy of Sandria National Lab-
oratories, Alberquerque, NM, USA (2006)

43. Rohrer, B., Hulet, S.: A learning and control approach based on the human neuromotor sys-
tem. In: Proceedings of Biomedical Robotics and Biomechatronics, BioRob (2006)

44. Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation.
Philosophical Transactions of the Royal Society B: Biological Sciences 358(1431), 537–547
(2003) PMC1693137

45. Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1969)
46. Wolpert, D.M.: A unifying computational framework for motor control and social interac-

tion. Phil. Trans. R. Soc. Lond. B(358), 593–602 (2003)
47. Wolpert, D.M., Flanagan, J.R.: Motor prediction. Current Biology: CB 11(18), 729–732

(2001)
48. Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Na-

ture Neuroscience 3, 1212–1217 (2000)
49. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory 24(5), 530–536 (1978)

93

94

V

Paper V

Behavior Recognition for Learning from
Demonstration∗

Erik Billing, Thomas Hellström, and Lars-Erik Janlert

Dept. Computing Science, Umeå University, SE-901 87 Umeå, Sweden
billing@cs.umu.se, thomash@cs.umu.se, and lej@cs.umu.se

www.cs.umu.se/research/robotics

Abstract: Two methods for behavior recognition are presented and evaluated. Both
methods are based on the dynamic temporal difference algorithm Predictive Sequence
Learning (PSL) which has previously been proposed as a learning algorithm for robot
control. One strength of the proposed recognition methods is that the model PSL
builds to recognize behaviors is identical to that used for control, implying that the
controller (inverse model) and the recognition algorithm (forward model) can be im-
plemented as two aspects of the same model. The two proposed methods, PSLE-
Comparison and PSLH-Comparison, are evaluated in a Learning from Demonstra-
tion setting, where each algorithm should recognize a known skill in a demonstration
performed via teleoperation. PSLH-Comparison produced the smallest recognition
error. The results indicate that PSLH-Comparison could be a suitable algorithm for
integration in a hierarchical control system consistent with recent models of human
perception and motor control.

Keywords: Learning and Adaptive Systems, Neurorobotics, Autonomous Agents

∗ Copyright c© IEEE. All rights reserved. Reprinted, with permission, from 2010 IEEE International
Conference on Robotics and Automation (ICRA).

97

98

Behavior Recognition for Learning from
Demonstration

Erik A. Billing
Department of Computing Science

Umeå University
Umeå, Sweden

Email: billing@cs.umu.se

Thomas Hellström
Department of Computing Science

Umeå University
Umeå, Sweden

Email: thomash@cs.umu.se

Lars-Erik Janlert
Department of Computing Science

Umeå University
Umeå, Sweden

Email: lej@cs.umu.se

Abstract—Two methods for behavior recognition are pre-
sented and evaluated. Both methods are based on the dynamic
temporal difference algorithm Predictive Sequence Learning
(PSL) which has previously been proposed as a learning
algorithm for robot control. One strength of the proposed
recognition methods is that the model PSL builds to recognize
behaviors is identical to that used for control, implying that
the controller (inverse model) and the recognition algorithm
(forward model) can be implemented as two aspects of the
same model. The two proposed methods, PSLE-Comparison and
PSLH-Comparison, are evaluated in a Learning from Demon-
stration setting, where each algorithm should recognize a known
skill in a demonstration performed via teleoperation. PSLH-
Comparison produced the smallest recognition error. The results
indicate that PSLH-Comparison could be a suitable algorithm
for integration in a hierarchical control system consistent with
recent models of human perception and motor control.

Index Terms—Learning and Adaptive Systems, Neuro-
robotics, Autonomous Agents

I. INTRODUCTION

In previous work [1], we present the dynamic temporal
difference algorithm Predictive Sequence Learning (PSL) and
apply it to a Learning from Demonstration (LFD) problem.
In this application, PSL builds a model from a set of
demonstrations, i.e., sequences of sensor and motor events
recorded while a human teacher performs the desired task
by teleoperating the robot. After training, PSL can be used
to control the robot by continually predicting the next action
based on the sequence of passed sensor and motor events.

PSL has many interesting properties seen as a learning
algorithm for robots. It is model and parameter free, meaning
that it introduces very few assumptions into learning and does
not need any task specific configuration. Knowledge is stored
in a hypothesis library H , where each hypothesis h ∈ H
describes a relation between a sequence of events X =(
et−|h|+1, et−|h|+2, . . . , et

)
and a target event Y = et+1. |h|

denotes the length of h as the number of elements in X . PSL
treats control as a prediction problem, and creates longer h
when it fails to predict the next event. This corresponds to a
dynamically growing state space similar to a Variable order
Markov Model (VMM). Hypotheses are only created when
predictions fail, meaning that the learning rate is proportional

to the prediction error and PSL will stop to learn in domains
where it can predict future events perfectly.

Our evaluation of PSL indicates that the algorithm is
suitable for learning problems up to a certain complexity.
However, PSL is subject to combinatorial explosion and fails
to reproduce more complex behavior properly. Specifically,
PSL has problems capturing long-term variations within a
behavior and some kind of higher level coordination is clearly
necessary in these situations.

The design of PSL is inspired by several computational
models of the human brain, MOSAIC [2], [3], [4], Predictive
Coding [5], [6], [7], and Hierarchical Temporal Memory
[8], [9]. These models propose a hierarchical organization
of perception and control. Specifically, MOSAIC presents a
modular view of central nervous system, where each module
implements one forward model and one inverse model. The
forward model predicts the sensory consequences as a result
of a motor command, while the inverse model calculates the
motor command that, in the current state, leads to the goal
[4]. Each module works under a certain context, or bias,
provided by higher ordinate modules in the hierarchy. One
purpose of the forward model is to create a responsibility
signal λβ representing a measure of how well the present
activity corresponds to the module’s context. If the prediction
error is small, the activity is familiar and λβ is high.
However, if the prediction error is large, the activity does
not correspond to the module’s context, and actions produced
by the inverse model may be inappropriate. An overview of
these approaches to intertwined control and perception for
LFD is found in our previous work [10].

Placing PSL as a module in this kind of hierarchical
structure could constitute one way to solve the problems
with combinatorial explosion. In such an architecture, each
PSL module would work under a certain context and only
model the system variables that change quickly, while slower
temporal dynamics are handled higher up in the hierarchy.
However, this requires not only that PSL is useful as an
inverse model, but also that it can constitute a forward model,
able to compute λβ . On the way to propose a fully developed
hierarchical system based on the PSL algorithm, the present
work proposes two ways of applying PSL as a forward model

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 866

99

and evaluates how well each approach is able to recognize
a certain activity, a problem that within LFD is known as
behavior recognition.

One of the few robot control architectures that employs
this kind of organization is HAMMER [11], [12], [13], which
focuses on direction of attention during action recognition.
While HAMMER is in many respects further developed that
the work presented here, it implements hard-coded forward
models paired with inverse models. In the present work, both
forward and inverse models are generated from demonstrated
data in a model-free way.

The rest of this paper is organized as follows. Section
II presents a short background to behavior recognition and
introduces some of our earlier research relevant for the
present work. Section III gives a detailed description of PSL,
which is developed into the proposed methods for behavior
recognition, presented in Section IV. Experimental setup
and results from the conducted evaluation is presented in
Section V. Finally, conclusions, limitations and future work
are discussed in Section VI.

II. BEHAVIOR RECOGNITION FOR LFD

Recent work in LFD is often concerned with identification
and selection of behavior primitives, or skills, which can be
seen as simple controllers and correspond to larger parts of
the demonstration [14]. Behavior primitives implement hard-
coded or previously learned behaviors that the robot can
execute. By matching these primitives with a demonstration,
selected primitives can be compiled into a new, more com-
plex, controller that will be able to repeat the demonstrated
behavior under varying environmental conditions [15], [14].

This approach transforms the general LFD process into the
three activities of behavior segmentation, behavior recogni-
tion and behavior coordination [16]. Behavior segmentation
refers to the process of dividing the observed event sequence
into segments which can be explained by a single primitive.
Behavior recognition is the process of matching each segment
with a primitive. Finally, behavior coordination involves
identifying switching criteria that control when the robot
should switch between different primitives. Identification of
switching criteria corresponds to finding sub-goals in the
demonstrated behavior.

The behavior recognition problem is closely related to the
creation of a metric of imitation performance which is a
common concept in the literature on LFD and imitation learn-
ing, e.g. [17], [18], [15]. The metric acts as a cost function
for imitation of a skill and is in this sense very similar to
the computation of a responsibility signal. Identification of a
metric of imitation performance is often focused on finding
the critical components of a skill by identifying invariants
within a set of demonstrations. One promising approach
to construct such a metric is to use the demonstrations
to impose constraints in a dynamical system [19], [20].
However, we take an alternative approach: Using forward
models to compute a measure of how well observed events
correspond to respective controller. Both behavior recognition
algorithms presented here compute λβ as a direct or indirect

function of prediction error. We believe that this approach
has larger potential to provide a generalizable solution to the
behavior recognition problem and it also has many interesting
connections to neurological models. A longer discussion of
these issues can be found in [21].

Another important aspect of the metric of imitation per-
formance is to solve the correspondence problem, i.e., com-
paring actions when the body of the teacher is different from
that of the student. This problem does not exist in LFD using
teleoperation and is not considered in the present work.

There are many possible ways to demonstrate new behavior
to a robot. Good overviews can be found in [15], [17]. In the
present work, we focus on demonstrations performed by con-
trolling the robot via teleoperation such that it performs the
desired behavior. In this case, a demonstration is a sequence
of sensor and motor events η = (u1, y1, u2, y2 . . . , uκ, yκ),
where κ denotes the most recent stage. An observation
yk ∈ Y is defined as the combination of all sensors readings
and an action uk ∈ U is defined as the combination of the
motor commands sent to the robot. The observation space Y
and action space U constitute the complete set of possible
events, known as an event alphabet

∑
= Y ∪ U . A stage

(uk, yk) comprises one action and the directly following
observation. In some situations we do not distinguish be-
tween observations and actions and define an event sequence
η = (e1, e2, . . . , et) as a sequence of discrete events e ∈

∑
up to the current time t.

In earlier work, we have developed and evaluated three
methods for behavior recognition [1]. The focus of the work
was to propose methods for constructing several interpreta-
tions from a single sequence of events, using the set of known
skills. Seen as a pure classification problem, one skill would
have to be selected as the one best representing that segment
in η. However, in our methods, all recognition algorithms
produces activity level λβ for each skill β. The activity level
is in this context identical to the notion of a responsibility
signal λβ , as discussed in the introduction.

While one of the evaluated recognition techniques showed
clear limitations, the other two, known as AANN-Comparison
and S-Comparison, showed promising results. AANN-
Comparison is based on a set of Auto-Associative Neural
Networks, one for each skill β. The network’s reconstruction
error for each stage (uk, yk) from the demonstration η is used
as a measure of λβ (k).

S-Comparison is based on S-Learning, a prediction-based
control algorithm inspired by the human neuro-motor system
[22], [23]. S-Learning is a dynamic temporal difference (TD)
algorithm able to extract temporal patterns ρ in presented
data. S-Comparison computes a similarity measure δρ (k)
for each pattern ρ, and uses the highest similarity value
δmax (k) to compute λβ (k). Details of both S-Comparison
and AANN-Comparison are found in [1].

III. PREDICTIVE SEQUENCE LEARNING

PSL is trained on an event sequence η = (e1, e2, . . . , et),
where each event e is a member of an alphabet

∑
. η is

867

100

defined up to the current time t from where the next event
et+1 is to be predicted.

PSL stores its knowledge as a set of hypotheses, known
as a hypothesis library H . A hypothesis h ∈ H ex-
presses a dependence between an event sequence X =
(et−n, et−n+1, . . . , et) and a target event I = et+1:

h : X ⇒ I (1)

Xh is referred to as the body of h and Ih denotes the
head. Each h is associated with a confidence c reflecting
the conditional probability P (I|X). For a given η, c is
defined as c (X ⇒ I) = s (X, I) /s (X), where the support
s (X) is the proportion of transactions in η that contains X .
(X, I) denotes the concatenation of X and I . A transaction
is defined as a sub-sequence of the same size as X , occurring
after the creation of h. The length of h, denoted |h|, is
defined as the number of elements in Xh. Hypotheses are
also referred to as states, since a hypothesis of length |h|
corresponds to VMM state of order |h|.

A. Detailed description of PSL

Let the library H be the empty set of hypotheses. During
learning, described in Algorithm 1, PSL tries to predict the
future event et+1, based on the observed event sequence η.
If the prediction is wrong, a new hypothesis hnew is created
and added to H . hnew is one element longer than the longest
hypothesis hc ∈ H that would have produced a correct
prediction (see Algorithm 1 for an exact description of how
hc is selected). In this way, PSL grows the library only when
it produces incorrect predictions.

For example, consider the event sequence η =
ABCCABCC. Let t = 1. PSL will search for a hypothesis
with a body matching A. H is initially empty and conse-
quently PSL will not be able to perform a prediction. Instead,
PSL creates a new hypothesis (A)⇒ B which is added to H .
The same procedure will be executed at t = 2 and t = 3 so
that H = {(A)⇒ B; (B)⇒ C; (C)⇒ C}. At t = 4, PSL
will find a matching hypothesis hmax : (C)⇒ C producing
the wrong prediction C. Consequently, a new hypothesis
(C)⇒ A is added to H . The predictions at t = 5 and t = 6
will be successful while h : (C) ⇒ A will be selected at
t = 7 and produce the wrong prediction. As a consequence,
PSL will create a new hypothesis hnew : (B,C) ⇒ C.
PSL has now learned the pattern and will not add any
more hypotheses to H until it observes another η containing
elements that do not follow this pattern.

IV. METHODS FOR BEHAVIOR RECOGNITION

Two methods based on the PSL algorithm are here pre-
sented. The first method, PSLE-Comparison, is inspired by
the HMOSAIC architecture [2] and computes the responsi-
bility signal λβ as an inverse function of the normalized pre-
diction error, produced by PSL. The second method, PSLH-
Comparison, is more closely built on the PSL algorithm. λ
is in this method a function of hypothesis activation match.

Algorithm 1 Predictive Sequence Learning (PSL)
Require: an event sequence η = (e1, e2, . . . , en)

1: t← 1
2: H ← ∅
3: M ←

{
h ∈ H | Xh =

(
et−|h|+1, et−|h|+2, . . . , et

)}
4: if M = ∅ then
5: let hnew : (et)⇒ et+1

6: add hnew to H
7: goto 20
8: end if
9: M̂ ← {h ∈M | |h| ≥ |h′| for all h′ ∈M}

10: let hmax ∈
{
h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂

}
11: if et+1 6= Ihmax then
12: let hc be the longest hypothesis

{h ∈M | Ih = et+1}
13: if hc = null then
14: let hnew : (et)⇒ et+1

15: else
16: let hnew :

(
et−|hc|, et−|hc|+1, . . . , et

)
⇒ et+1

17: end if
18: add hnew to H
19: end if
20: update the confidence for hmax and hcorrect as

described in Section III
21: t← t+ 1
22: if t < n then
23: goto 2
24: end if

A. PSLE-Comparison

The responsibility signal λβ (t) of skill β at time t is given
by:

λβ (t) =
t∑

i=t−ν

1−∆β
i

ν
(2)

where ν is a constant describing the temporal extension of
the behavior, i.e., λβ is defined as an average of prediction
performance over ν time steps. The prediction error ∆β

i is
given by:

∆β
i =

{
0 if ei = êβi
1 otherwise

(3)

where êβi is the output of the forward model at position i in
ηβ .

By training a PSL library Hβ on each event sequence ηβ ,
one forward model for each skill β is created. The precise
training procedure is described in Algorithm 1. The event
sequence ηβ used for training is a demonstration of skill β. In
practice, several demonstrations of each skill may of course
be used, but for simplicity we here consider them to be a
single sequence of events.

After training, Hβ is used for prediction as described in
Algorithm 2. In principle, any discrete prediction algorithm

868

101

Algorithm 2 Making predictions using PSL
Require: an event sequence η = (e1, e2, . . . , et−1)
Require: the trained library H =

(
h1, h2, . . . , h|H|

)
1: M ←

{
h ∈ H | Xh =

(
et−|h|, et−|h|+1, . . . , et−1

)}
2: M̂ ← {h ∈M | |h| ≥ |h′| for all h′ ∈M}
3: let hmax ∈

{
h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂

}
4: return the prediction êt = Ihmax

could be used as forward model, but an advantage of PSL is
that the same algorithm constitutes both forward and inverse
model. As enforced by the MOSAIC framework [24], [3], the
forward and inverse models should be paired, meaning that
the forward model should be able to predict the consequences
of actions produced by the inverse model. This pairing is
built into PSL, since the prediction and control is actually
performed by the same model.

B. PSLH-Comparison

One problem with comparison methods based directly on
prediction error was observed during our previous investiga-
tion of methods for behavior recognition [1]. Prediction error
can be seen as a measure of how consistent an event sequence
η is with some skill β. However, the prediction error does
not tell whether η demonstrates all aspects of β, or only a
fraction of these aspects.

In an attempt to approach this problem, PSLH-Comparison
was designed. PSL is here used to create a single library H
from skill demonstrations ηβ of all β. λβ (t) is defined as
the intersection between the hypotheses activated during the
demonstrations of β, and the hypotheses activated by η within
the time span t− ν to t:

λβ (t) =

∑
h∈H

min
(
a
ηβ
h , a

ηt
h

)
∑
h∈H

ath
(4)

where aηβh = hAct(ηβ , H , hη , 1, |ηβ |) and aηth = hAct(η, H ,
hη , t−ν, t). Equation 4 is the Bayes Pe, the minimum error
probability between the two hypothesis activation distribu-
tions [25]. The hypothesis activation function hAct is defined
in Algorithm 3, calculating the prediction contribution for
a specific hypothesis hη , given a certain time interval in η.
Similarly to PSLE-Comparison, ν is a constant describing
the temporal extension of the skill. The minimum error
probability gives reward for hypotheses that are activated in
both behaviors (similar to inverted prediction error), but also
gives penalty for hypotheses that are only activated by one
of the event sequences η or ηβ .

V. EVALUATION

The two proposed methods for behavior recognition,
PSLE-Comparison and PSLH-Comparison, are here tested
in an LFD setting using a Khepera II miniature robot [26].
A load-transport-unload task is defined, consisting of three
sub-behaviors or skills. Skill 1 involves the robot moving

Algorithm 3 Hypothesis activation
function hAct(η, H , hη , tstart, tstop)

1: t← tstart
2: ah ← 0
3: M ←

{
h ∈ H | Xh =

(
et−|hη|, et−|hη|+1, . . . , et−1

)}
4: M ′ ← {h ∈M | Ih = et}
5: M̂ ← {h ∈M ′ | |h| ≥ |h′| for all h′ ∈M ′}
6: let hmax ∈

{
h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂

}
7: if hmax = h then
8: ah ← ah + 1

tstop−tstart
9: end if

10: t← t+ 1
11: if t ≤ tstop then
12: goto 3
13: end if

forward in a corridor approaching an object (cylindrical wood
block). When the robot gets close to the object, it should
stop and wait for the human teacher to “load” the object,
i.e., place it upon the robot. After loading, the robot turns
around and goes back along the corridor. Skill 2 involves
general corridor driving, taking turns in the right way without
hitting the walls and so on. Skill 3 constitutes the “unloading”
procedure, where the robot stops in a corner and waits for the
teacher to remove the object and place it to the right of the
robot. Then the robot turns and pushes the cylinder straight
forward for about 10 centimeters, backs away and turns to
go for another object. The sequence of actions expected by
the robot is illustrated in Figure 1 and the experimental setup
can be seen in Figure 2. Even though the setup was roughly
the same in all experiments, the starting positions and exact
placement of the walls varied between demonstration and
repetition.

The robot was given no previous knowledge about itself or
its surroundings. The only obvious design bias is the thresh-
olding of proximity sensors into three levels, far, medium
and close, corresponding to distances of a few centimeters.
This thresholding was introduced to decrease the size of the
observation space Y , limiting the amount of training required.
An observation y ∈ Y is defined as the combination of
the eight proximity sensors, producing a total of 38 possible
observations. An action u ∈ U is defined as the combination
of the speed commands sent to the two motors.

To put the performance of PSLE-Comparison and PSLH-
Comparison in a larger context, two of our previously pro-
posed methods for behavior recognition, AANN-Comparison
and S-Comparison [1], are included in the evaluation.

All four comparison methods are trained on the same set
of demonstrations. Skill 1 is demonstrated seven times for a
total of about 2.6 minutes. Skill 2 is demonstrated for about
8.7 minutes and Skill 3 is demonstrated nine times, in total
4.6 minutes. For Task 4, the demonstrations from all three
partial tasks were used, plus a single 2 min demonstration
of the entire task. Exactly the same set of demonstrations
have previously been used for evaluating the PSL algorithm

869

102

wait for loading,

then turn and go back

turnstart

unload

push object

Figure 1. Schematic overview of the load-transport-unload task. Light gray
rectangles mark walls, dark gray circles mark the objects and dashed circles
mark a number of key positions for the robot. The robot starts by driving
upwards in the figure, following the dashed line. until it reaches the object
at the loading position. After loading, the robot turns around and follows the
dashed line back until it reaches the unload position. When the cylinder has
been unloaded (placed to the left of the robot), the robot turns and pushes
the object. Finally, it backs away from the pile and awaits more instructions.

Figure 2. Experimental setup.

as a controller [21]. PSL is then able to repeat each of
the three skills successfully, but unable to reproduce the
complete load-transport-unload task. The reason PSL was
unable to repeat the complete behavior is that knowledge
from the three skills interfered. The algorithm is unable to
separate the unloading activity from the turning, loading from
pushing and so on. In these situations, some kind of higher
level coordination is needed to prevent knowledge about the
wrong activity from interfering. If PSL, when used as an
algorithm for behavior recognition, is able to identify the
present activity, it should constitute a good basis for building
a coordination system separating the different activities into
skills, preventing knowledge interference.

Ten demonstrations of the full load-transport-unload task
are used for testing. A responsibility signal template is
defined for each of the demonstrations, specifying which
parts of the demonstration that corresponds to respective skill.
See Figure 3 for an example template. The templates are
manually constructed, based on time-synced video recordings
of each demonstration. Parts of the templates contained over-

0 10 20 30 40 50 60 70 80 90
0

0.5

1

λ
’
fo

r
L

o
a

d

0 10 20 30 40 50 60 70 80 90
0

0.5

1

λ
’ f

o
r

C
o

rr
id

o
r

0 10 20 30 40 50 60 70 80 90
0

0.5

1

λ
’ f

o
r

U
n

lo
a

d

Figure 3. Example template for a single demonstration of the load-
transport-unload task. The tick black line in top, middle and bottom plots
indicates λ′ for the Skill 1, 2 and 3, respectively. The green area below the
line indicates the parts of the demonstration where respective skill should
gain high responsibility. Overlapping periods are normalized such that the
sum of activity levels for all skills equals 1.

Table I
AVERAGE RECOGNITION ERRORS AND λ VARIANCE ON THE

load-transport-unload TASK.

Algorithm λ̃ σ2
λ λ̃Load λ̃Corr λ̃Unload

AANN-Comparison 0.405 0.027 0.350 0.423 0.442
S-Comparison 0.228 0.030 0.231 0.298 0.155

PSLE-Comparison 0.217 0.050 0.234 0.310 0.107
PSLH-Comparison 0.147 0.036 0.198 0.212 0.032

lapping skills, implying that these segments could have been
produced by more than one skill. While manually constructed
interpretations of the demonstrations may not constitute the
ideal environment for an absolute performance measure,
they should still constitute a good frame for comparing the
behavior recognition algorithms.

A. Results

Recognition errors for each of the four evaluated algo-
rithms are presented in Table I. λ̃β (t) =

∣∣∣λβ (t)− λ′β (t)
∣∣∣ is

the recognition error at time t, where λβ (t) is the computed
responsibility signal for skill β. λ′β (t) is the desired respon-
sibility signal for β defined by the template. Both λβ (t) and
λ′β (t) are normalized over all three skills.

In Table I, λ̃ is the total mean recognition error over all
skills. σ2

λ is the total variance over λ. λ̃Load, λ̃Corr and
λ̃Unload is the mean recognition error for each of the three
skills. All values are normalized averages over 10 demonstra-
tions. A standard t-test shows that both PSLE-Comparison
and PSLH-Comparison have significantly smaller λ̃ than the
other algorithms (p < 0.005) and that PSLH-Comparison is
significantly better than PSLE-Comparison (p < 0.005).

Figure 4, 5 and 6 display the responsibility signals for
skill 1, 2 and 3, respectively. Each figure shows both the
desired responsibility signal λ′, and the signals computed
by each of the four recognition algorithms. Displayed values
are from the same demonstration as the template signal in
Figure 3 (and is consequently not an average over all ten

870

103

demonstrations, as opposed to values in Table I).

VI. DISCUSSION

In the present work, two methods for behavior recognition
are presented and evaluated. Both methods are based on the
dynamic temporal difference algorithm Predictive Sequence
Learning (PSL). PSL is both parameter-free and model-free
in the sense that no ontological information about the robot or
conditions in the world is pre-defined in the system. Instead,
PSL creates a state space (hypothesis library) in order to
predict the demonstrated data optimally.

The first method, PSLE-Comparison, takes inspiration
from the MOSAIC architecture [2], [24] and computes the
responsibility signal λβ based on prediction error. The second
method, PSLH-Comparison, is based on the minimum error
probability between activation distributions over model H .
PSLH-Comparison was designed to not only compute λβ as
a function of skill match (inverse prediction error) but also
include a penalty for aspects of the skill not present in the
demonstration.

The two algorithms are compared to two other methods for
behavior recognition, AANN-Comparison and S-Comparison
[1]. Performance is measured as the average recognition
error. Both PSLE-Comparison and PSLH-Comparison shows
significantly smaller recognition error than the other methods.
However, the difference between PSLE-Comparison and S-
Comparison is small. Overall, PSLH-Comparison is the win-
ner with significantly smaller recognition errors than the other
algorithms.

The present evaluation is based on ten demonstrations of
a load-transport-unload task using a Khepera II robot [26].
This task is selected since the same data has previously been
used to evaluate PSL as a controller [21]. In the previous
evaluation, it was concluded that the PSL could learn each
of the three skills (load, corridor and unload) but PSL was
unable to repeat the overall task. The load-transport-unload
task should consequently constitute a setting where some
higher level coordination is necessary. Being able to identify
each of the three skills in a demonstration of the whole
behavior is one step towards creating such a coordination
mechanism, allowing PSL to be placed within a hierarchical
control architecture such as HMOSAIC [2].

The results show that the proposed recognition methods
are significantly better than the benchmark methods used
in the evaluation. An overall recognition error of less than
0.15 for PSLH-Comparison is in fact much better than
expected. How well the algorithms would do in an on-line
situation is however still an open question. The template
signal λ′β (t) defined as the “correct” responsibility signal
for skill β at time t merely reflects the teacher’s high-
level understanding of the demonstrated behavior, and is not
necessarily the best way to separate the overall behavior into
skills. It should also be mentioned that the algorithms are
tested under conditions with relatively low noise levels. Even
though S-Learning has been evaluated under noisy conditions
with good results [23], it is expected that the PSL-based
recognition methods is affected by noise in similar ways

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
e

sp
o

n
si

b
ili

ty
 s

ig
n

a
l (

λ)

λ’

AANN-Comp.

S-Comp.

PSLE-Comp.

PSLH-Comp.

Figure 4. Responsibility signals for Skill 1 - Load. AANN-Comp, S-Comp,
PSLE-Comp and PSLH-Comp indicates the responsibility signal computed
with respective method.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
e

sp
o

n
si

b
ili

ty
 s

ig
n

a
l (

λ)
λ’

AANN-Comp.

S-Comp.

PSLE-Comp.

PSLH-Comp.

Figure 5. Responsibility signals for Skill 2 - Corridor. AANN-Comp,
S-Comp, PSLE-Comp and PSLH-Comp indicates the responsibility signal
computed with respective method.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
e

sp
o

n
si

b
ili

ty
 s

ig
n

a
l (

λ)

λ’

AANN-Comp.

S-Comp.

PSLE-Comp.

PSLH-Comp.

Figure 6. Responsibility signals for Skill 3 - Unload. AANN-Comp, S-Comp,
PSLE-Comp and PSLH-Comp indicates the responsibility signal computed
with respective method.

871

104

as PSL is subject to combinatorial explosion in large state
spaces. Furthermore, both proposed algorithms compute the
responsibility signal over a temporal extension ν, meaning
that λβ (t) corresponds to how well β explains the events
(et−ν , et−ν+1, . . . , et). I.e., we only know if the controller
defined by β is the right choice for the present situation
after these events have already occurred. Wolpert and co-
workers [3] have also observed this problem, and introduce
a responsibility predictor that estimates future responsibility
signals. A corresponding mechanism is probably necessary
when integrating the PSL based recognition methods with a
controller.

A. Conclusions and future work

The results show that Bayes Pe (minimum error probabil-
ity) over the activation pattern in the forward model (PSLH-
Comparison) is a better method for behavior recognition than
the prediction error (PSLE-Comparison), in the evaluated
setting. While a more extensive study is necessary to draw
any conclusions about the general performance of these
algorithms, we find these results to be promising and intend
to extend this evaluation to behavior recognition in other
domains, and possibly to other types of data.

A big advantage of using PSL both for control (as de-
scribed in [21]) and behavior recognition is that the forward
and inverse computations are in fact based on the same
model, i.e., the PSL library. This approach has several
theoretical connections to the view of human perception and
control as two heavily intertwined processes.

The present work should be seen as one step towards a
hierarchical control architecture that can learn and coordinate
itself, based on the PSL algorithm. The model-free design
of PSL introduces very few assumptions into learning, and
should constitute a good basis for many types of learning
and control problems. Integrating PSLE-Comparison with a
PSL-based control algorithm, to achieve a two-layer modular
control system, is the next step in this process and will be
part of our future work.

REFERENCES

[1] E. A. Billing and T. Hellström, “Behavior recognition for segmentation
of demonstrated tasks,” in IEEE SMC International Conference on
Distributed Human-Machine Systems, Athens, Greece, March 2008,
pp. 228 – 234.

[2] M. Haruno, D. M. Wolpert, and M. Kawato, “Hierarchical MOSAIC
for movement generation,” in International Congress Series 1250.
Elsevier Science B.V., 2003, pp. 575– 590.

[3] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control,” Neural Networks, vol. 11, no. 7–8, pp.
1317—1329, 1998.

[4] D. M. Wolpert, “A unifying computational framework for motor control
and social interaction,” Phil. Trans. R. Soc. Lond., vol. B, no. 358, pp.
593–602, Mar. 2003.

[5] K. J. Friston, “Functional integration and inference in the brain,”
Progress in Neurobiology, vol. 68, no. 2, pp. 113–143, Oct. 2002.

[6] ——, “Learning and inference in the brain,” Neural Networks: The
Official Journal of the International Neural Network Society, vol. 16,
no. 9, pp. 1325–52, 2003, PMID: 14622888.

[7] J. M. Kilner, K. J. Friston, and C. D. Frith, “Predictive coding: an
account of the mirror neuron system,” Cogn Process, vol. 8, pp. 159–
166, 2007.

[8] D. George, “How the brain might work: A hierarchical and temporal
model for learning and recognition,” Ph.D. dissertation, Stanford
University, Department of Electrical Engineering, 2008.

[9] D. George and J. Hawkins, “A hierarchical bayesian model of invariant
pattern recognition in the visual cortex,” in Proceedings of IEEE
International Joint Conference on Neural Networks (IJCNN’05), vol. 3,
2005, pp. 1812–1817 vol. 3.

[10] E. Billing, “Cognition reversed - robot learning from demonstration,”
Ph.D. dissertation, Umeå University, Department of Computing Sci-
ence, Umeå, Sweden, December 2009.

[11] Y. Demiris and M. Johnson, “Distributed, predictive perception of
actions: a biologically inspired robotics architecture for imitation and
learning,” Connection Science, vol. 15, no. 4, pp. 231–243, 2003.

[12] Y. Demiris and A. Dearden, “From motor babbling to hierarchical
learning by imitation: a robot developmental pathway,” in Proceedings
of the 5th International Workshop on Epigenetic Robotics, 2005, pp.
31—37.

[13] Y. Demiris and B. Khadhouri, “Hierarchical attentive multiple models
for execution and recognition of actions,” Robotics and Autonomous
Systems, vol. 54, no. 5, pp. 361–369, May 2006.

[14] M. Nicolescu, “A framework for learning from demonstration, gener-
alization and practice in Human-Robot domains,” Ph.D. dissertation,
University of Southern California, 2003.

[15] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008.

[16] E. A. Billing and T. Hellström, “A formalism for learning from demon-
stration,” in Cognition Reversed - Robot Learning from Demonstration.
Umeå, Sweden: Print & Media, Umeå University, 2009, pp. 73–102.

[17] C. L. Nehaniv and K. Dautenhahn, “Of hummingbirds and helicopters:
An algebraic framework for interdisciplinary studies of imitation and
its applications,” in Learning Robots: An Interdisciplinary Approach,
J. Demiris and A. Birk, Eds. World Scientific Press, 2000, vol. 24,
pp. 136–161.

[18] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn, “Action, state
and effect metrics for robot imitation,” in 15th IEEE International
Symposium on Robot and Human Interactive Communication (ROMAN
2006), Hatfield, Sep. 2006, pp. 232–237.

[19] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” RSJ Advanced
Robotics, Special Issue on Imitative Robots, vol. 21, no. 13, pp. 1521–
1544, 2007.

[20] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man and Cybernetics, Part B. Special issue on robot learning
by observation, demonstration and imitation, vol. 37, no. 2, pp. 286–
298, 2007.

[21] E. A. Billing, T. Hellström, and L. E. Janlert, “Model free learning
from demonstration,” in Proceedings of 2nd International Conference
on Agents and Artificial Intelligence (ICAART), J. Filipe, A. Fred, and
B. Sharp, Eds. Valencia, Spain: INSTICC, January 2010, pp. 62–71.

[22] B. Rohrer and S. Hulet, “BECCA - a brain emulating cognition
and control architecture,” Cybernetic Systems Integration Department,
Univeristy of Sandria National Laboratories, Alberquerque, NM, USA,
Tech. Rep., 2006.

[23] ——, “A learning and control approach based on the human neuro-
motor system,” in Proceedings of Biomedical Robotics and Biomecha-
tronics, BioRob, 2006.

[24] M. Haruno, D. M. Wolpert, and M. M. Kawato, “MOSAIC model for
sensorimotor learning and control,” Neural Comput., vol. 13, no. 10,
pp. 2201–2220, 2001.

[25] S. Cha and S. N. Srihari, “On measuring the distance between
histograms,” Pattern Recognition, vol. 35, no. 6, pp. 1355–1370, Jun.
2002.

[26] K-Team, “Khepera robot,” http://www.k-team.com, 2007. [Online].
Available: http://www.k-team.com

872

105

106

VI

Paper VI

Robot Learning from Demonstration using Predictive
Sequence Learning∗

Erik Billing, Thomas Hellström, and Lars-Erik Janlert

Dept. Computing Science, Umeå University, SE-901 87 Umeå, Sweden
billing@cs.umu.se, thomash@cs.umu.se, and lej@cs.umu.se

www.cs.umu.se/research/robotics

Abstract: In this chapter, the prediction algorithm Predictive Sequence Learning
(PSL) is presented and evaluated in a robot Learning from Demonstration (LFD) set-
ting. PSL generates hypotheses from a sequence of sensory-motor events. Generated
hypotheses can be used as a semi-reactive controller for robots. PSL has previously
been used as a method for LFD, but suffered from combinatorial explosion when ap-
plied to data with many dimensions, such as high dimensional sensor and motor data.
A new version of PSL, referred to as Fuzzy Predictive Sequence Learning (FPSL),
is presented and evaluated in this chapter. FPSL is implemented as a Fuzzy Logic
rule base and works on a continuous state space, in contrast to the discrete state space
used in the original design of PSL. The evaluation of FPSL shows a significant perfor-
mance improvement in comparison to the discrete version of the algorithm. Applied
to an LFD task in a simulated apartment environment, the robot is able to learn to
navigate to a specific location, starting from an unknown position in the apartment.

∗ To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

109

110

Robot Learning from Demonstration using
Predictive Sequence Learning

Erik Billing, Thomas Hellström, Lars-Erik Janlert
Department of Computing Science, Umeå University

Sweden

1. Introduction

In this chapter, the prediction algorithm Predictive Sequence Learning (PSL) is presented and
evaluated in a robot Learning from Demonstration (LFD) setting. PSL generates hypotheses from
a sequence of sensory-motor events. Generated hypotheses can be used as a semi-reactive
controller for robots. PSL has previously been used as a method for LFD (Billing et al., 2010;
2011) but suffered from combinatorial explosion when applied to data with many dimensions,
such as high dimensional sensor and motor data. A new version of PSL, referred to as
Fuzzy Predictive Sequence Learning (FPSL), is presented and evaluated in this chapter. FPSL
is implemented as a Fuzzy Logic rule base and works on a continuous state space, in contrast
to the discrete state space used in the original design of PSL. The evaluation of FPSL shows a
significant performance improvement in comparison to the discrete version of the algorithm.
Applied to an LFD task in a simulated apartment environment, the robot is able to learn to
navigate to a specific location, starting from an unknown position in the apartment.
Learning from Demonstration is a well-established technique for teaching robots new
behaviors. One of the greatest challenges in LFD is to implement a learning algorithm
that allows the robot pupil to generalize a sequence of actions demonstrated by the teacher
such that the robot is able to perform the desired behavior in a dynamic environment. A
behavior may be any complex sequence of actions executed in relation to sensor data (Billing
& Hellström, 2010).
The LFD problem is often formulated as four questions, what-to-imitate, how-to-imitate,
when-to-imitate and who-to-imitate which leads up to the larger problem of how to evaluate
an imitation (Alissandrakis et al., 2002). Large parts of the literature approach the learning
problem by trying to find the common features within a set of demonstrations of the same
behavior. A skill is generalized by exploiting statistical regularities among the demonstrations
(e.g. Calinon, 2009). This is reflected in the what-to-imitate question, originally introduced in a
classical work by Nehaniv & Dautenhahn (2000) and is in a longer form described as:

An action or sequence of actions is a successful component of imitation of a
particular action if it achieves the same subgoal as that action. An entire sequence
of actions is successful if it successively achieves each of a sequence of abstracted
subgoals.

The problem is difficult since a certain behavior can be imitated on many different abstraction
levels. Byrne & Russon (1998) identified two levels; the action-level imitation copying the
surface of the behavior and a program-level imitation copying the structure of the behavior. A

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

111

2 Robot Control

third level, the effect-level imitation, was introduced by Nehaniv & Dautenhahn (2001) in order
to better describe imitation between agents with dissimilar body structures. Demiris & Hayes
(1997) proposed three slightly different levels: 1) basic imitation with strong similarities to
the notion of action-level imitation, 2) functional imitation that best corresponds to effect-level
imitation and 3) abstract imitation that represents coordination based on the presumed internal
state of the agent rather than the observed behavior. Demiris and Hayes give the example of
making a sad face when someone is crying.
The necessity to consider the level of imitation in LFD becomes apparent when considering
two demonstrations that look very different considered as sequences of data, but that we as
humans still interpret as examples of the same behavior since they achieve similar results on
an abstract level. This would correspond to a functional or program-level imitation. In these
situations it is very difficult to find similarities between the demonstrations without providing
high level knowledge about the behavior, often leading to specialized systems directed to LDF
in limited domains.
A related problem is that two demonstrations of the same behavior may not have the same
length. If one demonstration takes longer time than another, they can not be directly compared
in order to find common features. Researchers have therefore used techniques to determine
the temporal alignment of demonstrations. One common technique is dynamic time warping
(Myers & Rabiner, 1981), that can be used to compensate for temporal differences in the data.
Behaviors can be demonstrated to a robot in many different ways. Argall et al. (2009)
outline four types of demonstrations: A direct recording of sensor stimuli, joint angles, etc.,
is referred to as an identity record mapping. In this case, the robot is often used during the
demonstration and controlled via teleoperation or by physically moving the robot’s limbs
(kinestetic teaching). An external observation, e.g. a video recording of the teacher, is called
a non-identity record mapping. This type of demonstrations poses a difficult sensing problem
of detecting how the teacher has moved, but also allows much more flexible demonstration
setting. The teacher may have a body identical to that of the pupil (identity embodiment) or a
body with a different structure (non-identity embodiment). In the latter case, the demonstration
has to be transformed into corresponding actions using the body of the pupil, a difficult
problem known as the correspondence problem (Nehaniv & Dautenhahn, 2001). In this work
we focus on LFD via teleoperation. Sensor data and motor commands are in this setting
recorded while a human teacher demonstrates the desired behavior by tele-operating the
robot, producing demonstrations with identity in both record mapping and embodiment.

1.1 Metric of imitation
Successful imitation requires that relevant features of the demonstration are selected at a
suitable imitation level and processed into a generalized representation of the behavior. The
process is difficult to implement in a robot since it is often far from obvious which imitation
level that is optimal in a specific situation, and the relevance of features may consequently
vary significantly from one learning situation to another. This problem has been formalized
as a metric of imitation, defined as a weighted sum over all strategy-dependent metrics on all
imitation levels (Billard et al., 2003).
The metric of imitation was originally demonstrated on a manipulation task with a humanoid
robot (Billard et al., 2003). With focus on the correspondence problem, Alissandrakis et al.
(2005) propose a similar approach to imitation of manipulation tasks. The what-to-imitate
problem is approached by maximizing trajectory agreements of manipulated objects, using
several different metrics. Some metrics encoded absolute trajectories while other metrics

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

112

Robot Learning from Demonstration using Predictive Sequence Learning 3

encoded relative object displacement and the relevant aspects of the behavior were in this way
extracted as the common features in the demonstration set. Calinon et al. (2007) developed
this approach by encoding the demonstration set using a mixture of Gaussian/Bernoulli
distributions. The Gaussian Mixture Model approach is attractive since the behavior is
divided into several distributions with different covariance, and different metrics can in this
way be selected for different parts of the demonstrated behavior. More recently, similar
encoding strategies have been evaluated for learning of a robot navigation task (de Rengervé
et al., 2010).

1.2 Behavior primitives as a basis for imitation
Another common approach to LFD is to map the demonstration onto a set of pre-programmed
or previously learned primitives controllers (Billing & Hellström, 2010). The approach
has strong connections to behavior-based architectures (Arkin, 1998; Matarić, 1997; Matarić &
Marjanovic, 1993) and earlier reactive approaches (e.g. Brooks, 1986; 1991). When introducing
behavior primitives, the LFD process can be divided into three tasks (Billing & Hellström,
2010):

1. Behavior segmentation where a demonstration is divided into smaller segments.

2. Behavior recognition where each segment is associated with a primitive controller.

3. Behavior coordination, referring to identification of rules or switching conditions for how the
primitives are to be combined.

Behavior segmentation and recognition can be seen as one way to approach the
what-to-imitate problem, whereas behavior coordination is part of how-to-imitate. The
approach represents one way of introducing good bias in learning and solve the generalization
problem by relying on previous behavioral knowledge. While there are many domain specific
solutions to these three subproblems, they appear very difficult to solve in the general case.
Specifically, behavior recognition poses the problem of mapping a sequence of observations
to a set of controllers to which the input is unknown. Again, the need to introduce a metric of
imitation appears.
Part of the problem to find a general solution to these problems may lie in a vague definition
of behavior (Matarić, 1997). The notion of behavior is strongly connected to the purpose of
executed actions and a definition of goal. Nicolescu (2003) identified two major types of goals:

Maintenance goals: A specific condition has to be maintained for a time interval.

Achievement goals: A specific condition has to be reached.

The use of behavior primitives as a basis for imitation has many connections to biology
(e.g. Matarić, 2002) and specifically the mirror system (Brass et al., 2000; Gallese et al., 1996;
Rizzolatti et al., 1988; Rizzolatti & Craighero, 2004). While the role of the mirror system
is still highly debated, several groups of researchers propose computational models where
perception and action are tightly interweaved. Among the most prominent examples are
the HAMMER architecture (Demiris & Hayes, 2002; Demiris, 1999; Demiris & Johnson, 2003)
and the MOSAIC architecture (Haruno et al., 2001; Wolpert & Kawato, 1998). Both these
architectures implement a set of modules, where each module is an inverse model (controller)
paired with a forward model (predictor). The inverse and forward models are trained together
such that the forward model can predict sensor data in response to the actions produced by
the inverse model. The inverse model is tuned to execute a certain behavior when the forward
model produces good predictions. The prediction error is used to compute a bottom-up

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

113

4 Robot Control

signal for each module. Based on the bottom-up signal, a top-down responsibility signal or
confidence value is computed and propagated to each module. The output of the system is
a combination of the actions produced by each inverse model, proportional to their current
responsibility. The responsibility signal also controls the learning rate of each module, such
that modules are only updated when their responsibility is high. In this way, modules are
tuned to a specific behavior or parts of a behavior. Since the prediction error of the forward
model is used as a measure of how well the specific module fits present circumstances, it can
be seen as a metric of imitation that is learnt together with the controller. The architecture
can be composed into a hierarchical system where modules are organized in layers, with the
lowest layer interacting with sensors and actuators. The bottom-up signal constitutes sensor
input for the layer above and actions produced by higher levels constitutes the top-down
responsibility signal.
One motivation for this architecture lies in an efficient division of labor between different
parts of the system. Each module can be said to operate with a specific temporal resolution.
Modules at the bottom layer are given the highest resolution while modules higher up in the
hierarchy have decreasing temporal resolution. State variables that change slowly compared
to a specific module’s resolution are ignored by that module and are instead handled by
modules higher up in the hierarchy. Slowly changing states that lead to high responsibility for
the module is referred to as the module’s context. In a similar fashion, variables that change
fast in comparison to the temporal resolution are handled lower in the hierarchy. This allows
each module to implement a controller where the behavior depends on relatively recent states.
Long temporal dependencies are modeled by switching between modules, which removes
the requirement for each model to capture these dependencies. Furthermore, updates of a
single behavior or parts of a behavior will only require updates of a few modules and will
not propagate changes to other modules. See Billing (2009) for a longer discussion on these
aspects of hierarchical architectures.
The HAMMER and MOSAIC architectures make few restrictions on what kind of controllers
each module should implement. We argue however, that modules should be semi-reactive,
meaning that action selection and predictions of sensor events should be based on recent
sensor and motor events. Strictly reactive modules are not desirable since each module must
be able to model any dependency shorter than the temporal resolution of modules in the layer
directly above.
The division of behavior into modules is however also producing a number of drawbacks.
The possibility for the system to share knowledge between behaviors is limited. Moreover,
the system has to combine actions produced by different modules, which may be difficult in
cases when more than one module receives high responsibility.
One architecture with similarities to HAMMER and MOSAIC able to share knowledge
between different behaviors is RNNPB (Tani et al., 2004). RNNPB is a recurrent neural network
with parametric bias (PB). Both input and output layer of the network contains sensor and
motor nodes as well as nodes with recurrent connections. In addition, the input layer is given
a set of extra nodes, representing the PB vector. The network is trained to minimize prediction
error, both by back-propagation and by changing the PB vector. The PB vector is however
updated slowly, such that it organizes into what could be seen as a context layer for the rest
of the network. In addition to giving the network the ability to represent different behaviors
that share knowledge, the PB vector can be used for behavior recognition.
Another architecture known as Brain Emulating Cognition and Control Architecture (BECCA)
(Rohrer & Hulet, 2006) heavily influenced our early work on the PSL algorithm. The focus

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

114

Robot Learning from Demonstration using Predictive Sequence Learning 5

of BECCA is to capture the discrete episodic nature of many types of human motor behavior,
without introducing a priori knowledge into the system. BECCA was presented as a very
general reinforcement learning system, applicable to many types of learning and control
problems. One of the core elements of BECCA is the temporal difference (TD) algorithm
Sequence Learning (SL) (Rohrer, 2007). SL builds sequences of passed events which is used
to predict future events, and can in contrast to other TD algorithms base its predictions on
many previous states.
Inspired by BECCA and specifically SL, we developed the PSL algorithm as a method for LFD
(Billing et al., 2010; 2011). PSL has many interesting properties seen as a learning algorithm
for robots. It is model free, meaning that it introduces very few assumptions into learning and
does not need any task specific configuration. PSL can be seen as a variable-order Markov
model. Starting out from a reactive (first order) model, PSL estimates transition probabilities
between discrete sensor and motor states. For states that do not show Markov property, the
order is increased and PSL models the transition probability based on several passed events.
In this way, PSL will progressively gain memory for parts of the behavior that cannot be
modeled in a reactive way. In theory, there is no limitation to the order of the state and hence
the length of the memory, but PSL is in practice unable to capture long temporal dependencies
due to combinatorial explosion.
PSL has been evaluated both as a controller (Billing et al., 2011) and as a method for
behavior recognition (Billing et al., 2010). Even though the evaluation overall generated
good results, PSL is subject to combinatorial explosion both when the number of sensors
and actuators increase, and when the demonstrated behavior requires modeling of long
temporal dependencies. PSL can however efficiently model short temporal dependencies in a
semi-reactive way and should thus be a good platform for implementing a hierarchical system
similar to the HAMMER and MOSAIC architectures.
In this chapter, we present and evaluate a new version of PSL based on Fuzzy Logic. While
keeping the core idea of the original PSL algorithm, the new version can handle continuous
and multi dimensional data in a better way. To distinguish between the two, the new
fuzzy version of the algorithm is denoted FPSL, whereas the previous discrete version is
denoted DPSL. A detailed description of FPSL is given in Section 2. An evaluation with
comparisons between the two algorithms is presented in Section 3, followed by a discussion
and conclusions in section 4.

2. Predictive Sequence Learning

FPSL builds fuzzy rules, referred to as hypotheses h, describing temporal
dependencies between a sensory-motor event et+1 and a sequence of passed events(

et−|h|+1, et−|h|+2, . . . , et

)
, defined up until current time t.

h :
(

Υt−|h|+1 is Eh
|h|−1 ∧ Υt−|h|+2 is Eh

|h|−2 ∧ . . . ∧ Υt is Eh
0

)
C⇒ Υt+1 is Ēh (1)

Υi is the event variable and Eh (e) is a fuzzy membership function returning a membership
value for a specific e. The right hand side Ēh is a membership function comprising expected
events at time t + 1. |h| denotes the length of h, i.e., the number of left-hand-side conditions
of the rule. Both E and Ē are implemented as standard cone membership functions with base
width ε (e.g. Klir & Yuan, 1995).
A set of hypotheses can be used to compute a prediction êt+1 given a sequence of passed
sensory-motor events η, defined up to the current time t:

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

115

6 Robot Control

η = (e1, e2, . . . , et) (2)

The process of matching hypothesis to data is described in Section 2.1. The PSL learning
process, where hypotheses are generated from a sequence of data, is described in Section 2.2.
Finally, a discussion about parameters and configuration is found in Section 2.3.

2.1 Matching hypotheses
Given a sequence of sensory-motor events η = (e1, e2, . . . , et), a match αt (h) of the rule is
given by:

αt (h) :
|h|−1∧
i=0

Eh
i (et−i) (3)

where ∧ is implemented as a min-function.
Hypotheses are grouped in fuzzy sets C whose membership value C (h) describes the
confidence of h at time t:

C (h) =

t
∑

k=th
αk (h) Ēh (ek+1)

t
∑

k=th
αk (h)

(4)

.
th is the creation time of h or 1 if h existed prior to training. Each C represents a context and can
be used to implement a specific behavior or part of a behavior. The responsibility signal λt (C)
is used to control which behavior that is active at a specific time. The combined confidence
value C̃t (h) is a weighted sum over all C:

C̃t (h) =

∑
C

C (h) λt (C)

∑
C

λt (C)
(5)

.
C̃t can be seen as a fuzzy set representing the active context at time t. Hypotheses contribute
to a prediction in proportion to their membership in C̃ and the match set M̂. M̂ is defined in
three steps. First, the best matching hypotheses for each Ē is selected:

M =
{

h | α (h) ≥ α
(
h′
)

f or all
{

h′ | Ēh′ = Ēh
}}

(6)

.
The longest h ∈ M for each RHS is selected:

M̃ =
{

h | |h| ≥
∣∣h′∣∣ f or all

{
h′ ∈ M | Ēh′ = Ēh

}}
(7)

.
Finally, the match set M̂ is defined as:

M̂ (h) =

{
α (h) C̃ (h)

0
h ∈ M̃

otherwise
(8)

.
The aggregated prediction Ê (et+1) is computed using the Larsen method (e.g. Fullér, 1995):

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

116

Robot Learning from Demonstration using Predictive Sequence Learning 7

Ê (et+1) :
∨
h

Ēh (et+1) M̂ (h) (9)

Ê is converted to crisp values using a squared center of sum defuzzification:

ê =
∑
e

eÊ (e)2

∑
e

Ê (e)2 (10)

The amount of entropy in M̂ also bears information about how reliable a specific prediction
is, referred to as the trust ĉ:

ĉ
(

M̂
)

=

 0

exp
[

∑
h

M̂ (h) log2
(

M̂ (h)
)] M̂ = ∅

otherwise
(11)

The trust is important since it allows a controller to evaluate when to rely on PSL, and when
to choose an alternate control method. The proportion of time steps in η for which ĉ > 0 and
PSL is able to produce a prediction is referred to as the coverage φ (η):

φ (η) =

t
∑

i=1

{
1
0

ĉi > 0
otherwise
t

(12)

2.2 Generating hypotheses
Hypotheses can be generated from a sequence of sensory-motor events η. During training,
PSL continuously makes predictions and creates new hypotheses when no matching
hypothesis produces the correct prediction Ē. The exact training procedure is described in
Algorithm 0.1.
For example, consider the event sequence η = abccabccabcc. Let t = 1. PSL will search for
a hypothesis with a body matching a. Initially, the context set C is empty and consequently
PSL will create a new hypothesis (a) ⇒ b which is added to C with confidence 1, denoted
C (a⇒ b) = 1. The same procedure will be executed at t = 2 and t = 3 such that
C ((b)⇒ c) = 1 and C ((c)⇒ c) = 1. At t = 4, PSL will find a matching hypothesis
(c) ⇒ c producing the wrong prediction c. Consequently, a new hypothesis (c) ⇒ a is
created and confidences are updated such that C ((c)⇒ c) = 0.5 and C ((c)⇒ a) = 1. The
new hypothesis receives a higher confidence since confidence values are calculated from the
creation time of the hypothesis (Equation 4). The predictions at t = 5 and t = 6 will be correct
and no new hypotheses are created. At t = 7, both (c) ⇒ a and (c) ⇒ c will contribute
to the prediction Ê. Since the confidence of (c) ⇒ a is higher than that of (c) ⇒ c, Ê will
defuzzify towards a, producing the wrong prediction (Equation 10). As a result, PSL creates
a new hypothesis (b, c) ⇒ c. Similarly, (c, c) ⇒ a will be created at t = 8. PSL is now able to
predict all elements in the sequence perfectly and no new hypotheses are created.
Source code from the implementation used in the present work is available online (Billing,
2011).

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

117

8 Robot Control

Algorithm 0.1 Predictive Sequence Learning (PSL)

Require: ψ = (e1, e2, . . . , eT) where T denotes the length of the training set
Require: α̂ as the precision constant, see text

1: let t← 1
2: let η = (e1, e2, . . . , et)
3: let C ← ∅
4: let Ê as Eq. 9
5: if Ê (et+1) < α̂ then
6: let hnew = CreateHypothesis (η, C) as defined by Algorithm 0.2
7: C (hnew)← 1
8: end if
9: Update confidences C (h) as defined by Equation 4

10: set t = t + 1
11: if t<T then
12: goto 2
13: end if

Algorithm 0.2 CreateHypothesis

Require: η = (e1, e2, . . . , et)
Require: C : h→ [0, 1]
Require: α as defined by Eq. 3

1: let M̂ (h) as Eq. 8

2: let M̄ =
{

h | Ēh (et+1) ≥ α̂ ∧ M̂ (h) > 0
}

where α̂ is the precision constant, see Section 2.3

3: if M̄ = ∅ then
4: let E∗ be a new membership function with center et and base ε
5: return hnew : (Υt is E∗)⇒ Υt+1 is Ē
6: else
7: let h̄ ∈ M̄
8: if C

(
h̄
)

= 1 then
9: return null

10: else
11: let E∗ be a new membership function with center et−|h̄| and base ε

12: return hnew :
(

Υt−|h̄| is E∗, Υt−|h̄|+1 is Eh̄
|h̄|−1

, . . . , Υt is Eh̄
0

)
⇒ Υt+1 is Ē

13: end if
14: end if

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

118

Robot Learning from Demonstration using Predictive Sequence Learning 9

2.3 Parameters and task specific configuration
A clear description of parameters is important for any learning algorithm. Parameters always
introduce the risk that the learning algorithm is tuned towards the evaluated task, producing
better results than it would in the general case. We have therefore strived towards limiting the
number of parameters of PSL. The original design of PSL was completely parameter free, with
the exception that continuous data was discretized using some discretization method. The
version of PSL proposed here can be seen as a generalization of the original algorithm (Billing
et al., 2011) where the width ε of the membership function E determines the discretization
resolution. In addition, a second parameter is introduced, referred to as the precision constant
α̂. α̂ is in fuzzy logic terminology an α-cut, i.e., thresholds over the fuzzy membership function
in the interval [0, 1] (Klir & Yuan, 1995).
ε controls how generously FPSL matches hypotheses. A high ε makes the algorithm crisp
but typically increases the precision of predictions when a match is found. Contrary, a low
ε reduces the risk that FPSL reaches unobserved states at the cost of a decreased prediction
performance. The high value of ε can be compared to a fine resolution data discretization for
the previous version of PSL.
α̂ is only used during learning, controlling how exact a specific Ē has to be before a new
hypothesis with a different Ē is created. A large α̂ reduces prediction error but typically results
in more hypotheses being created during learning.
Both ε and α̂ controls the tolerance to random variations in the data and can be decided based
on how exact we desire that FPSL should model the data. Small ε in combination with large α̂
will result in a model that closely fits the training data, typically producing small prediction
errors but also a low coverage.

3. Evaluation

Two tests were performed to evaluate the performance of FPSL and compare it to the previous
version. A simulated Robosoft Kompai robot (Robosoft, 2011) was used in the Microsoft RDS
simulation environment (Microsoft, 2011). The 270 degree laser scanner of the Kompai was
used as sensor data and the robot was controlled by setting linear and angular speeds.
Demonstrations were performed via tele-operation using a joypad, while sensor and motor
data were recorded with a temporal resolution of 20 Hz. The dimensionality of the laser
scanner was reduced to 20 dimensions using an average filter. Angular and linear speeds
were however fed directly into PSL.
The first test (Section 3.1) was designed to compare FPSL and DPSL as prediction algorithms,
using sensor data from the simulated robot. The second test (Section 3.2) demonstrates the
use of FPSL as a method for LFD.

3.1 Sensor prediction
The two versions of PSL were compared using a series of tests of prediction performance.
Even though DPSL and FPSL are similar in many ways, a comparison is not trivial since DPSL
works on discrete data whereas FPSL uses continuous data. Prediction performance of DPSL
will hence depend on how the data is discretized while the performance of FPSL depends on
the parameters ε and α̂.
To capture the prediction performance of the two algorithms using different configurations,
a series of tests were designed. 10 discretization levels were chosen, ranging from a fine
resolution where DPSL could only produce predictions on a few samples in the test set, to
a low resolution where DPSL rarely met unobserved states. Laser readings were discretized

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

119

10 Robot Control

Fig. 1. Simulation Environment (Microsoft, 2011) used for evaluations. Blue stars and yellow
dots represent starting positions used for demonstrations and test runs, respectively. The
green area marked with a G represents the target position. The white area under star 10 is the
robot.

over 0.8 m for the finest resolution, up to 8 m for the lowest resolution. Motor data was
discretized over 0.06m/s for the finest resolution up to 0.6 m/s for the lowest resolution.
Similarly, 10 ε values were chosen, corresponding to a cone base ranging from 0.8 m to 8 m
for laser data, and 0.06 m/s up to 0.6 m/s for motor data. α̂ was given a constant value of 0.9,
corresponding to a error tolerance of 10% of ε.
10 data files were used, each containing a demonstration where the teacher directed the robot
from a position in the apartment to the TV, see Figure 1. A rotating comparison was used,
where PSL was tested on one demonstration at a time and the other nine demonstrations
were used as training data. Prediction performance was measured in meters on laser range
data.

3.1.1 Results
The results from the evaluation are illustrated in Figure 2. While the ε value of FPSL cannot
directly be compared to the discretization level used for DPSL, the two parameters have
similar effect on coverage. Prediction error is only calculated on the proportion of the data for
which prediction are produced, and consequently, prediction error increases with coverage.

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

120

Robot Learning from Demonstration using Predictive Sequence Learning 11

0 1 2 3 4 5 6 7 8
Discretization (m)

0.0

0.5

1.0

1.5

2.0

A
v
e
ra
g
e
 p
re
d
ic
ti
o
n
 e
rr
o
r
(m

)

0 1 2 3 4 5 6 7 8
Discretization (m)

0

20

40

60

80

100

C
o
v
e
ra
g
e
 (
%
)

Fig. 2. Results from the prediction evaluation (Section 3.1). Upper plot shows prediction
errors for FPSL (solid line) and DPSL (dashed line). Lower plot shows coverage , i.e. the
proportion of samples for which the algorithm generated predictions, see Equation 12.
Vertical bars represent standard deviation.

3.2 Target reaching
This evaluation can be seen as a continuation of previous tests with DPSL using a Khepera
robot (Billing et al., 2011). The evaluation is here performed in a more complex environment,
using a robot with much larger sensor dimensionality. Initial tests showed that DPSL has
sever problems to handle the increased sensor dimensionality when used as a controller.
A discretization resolution of about 2 m appeared necessary in order to produce satisfying
discrimination ability. Even with this relatively low resolution, the 20 dimensional data
produced a very large state space causing DPSL to frequently reach unrecognized states.
DPSL could control the robot after intense training in parts of the test environment, but could

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

121

12 Robot Control

not compete with FPSL in a more realistic setting. We therefore chose to not make a direct
controller comparison, but rather show the behavior of FPSL in an applied and reproducible
setting.
FPSL was trained on 10 demonstrations showing how to get to the TV from various places in
the apartment, see Figure 1. The performance of FPSL as a method for LFD was evaluated
by testing how often the robot reached the target position in front of the TV starting out
from 10 different positions than the ones used during training. FPSL controlled the robot
by continuously predicting the next sensory-motor event based on the sequence of passed
events. The motor part of the predicted element was sent to the robot controller. A standard
reactive obstacle avoidance controller was used as fallback in cases where FPSL did not find
any match with observed data. The task was considered successfully executed if the target
position was reached without hitting any walls or obstacles. The experiment was repeated ten
times, producing a total of 100 test runs.

3.2.1 Results
FPSL successfully reached the target position in front of the TV (the green area in Figure 1) in
79% of the test runs. In 68 runs, it stopped in front of the TV as demonstrated, but in 11 runs it
failed to stop even though it reached the target position. The distribution over the 10 starting
positions illustrated in Figure 3.

4. Discussion

Applied as a robot controller, PSL is a semi-reactive generative model that produces both
actions and expected observations, based on recent sensory-motor events. We believe that this
approach to robot learning has great potential since the behavior can be learnt progressively
and previous knowledge contributes to the interpretation of new events. It is also general
in the sense that very little domain specific knowledge is introduced. Memories are stored
as sequences of sensory-motor events that in principle can represent any behavior. While
PSL efficiently can represent behaviors with short temporal dependencies, it is subject to
combinatorial explosion when the behavior requires representations over longer time spans.
We argue that the gradually extending memory of PSL, from being purely reactive to
containing representations over longer time when needed, provides a good bias in learning.
It will however make learning of behaviors that do require long temporal dependencies slow.
The fuzzy version of PSL presented in this work does not directly provide a solution to this
problem, but is one step towards integrating PSL in a hierarchical structure as discussed in
Section 1.2.
The seeds to FPSL came from the observation that a lot of training was required in order
to cover the state space of DPSL with satisfying resolution. A better tradeoff between high
precision in prediction and coverage would make PSL a more competitive alternative for real
world LFD scenarios. Without sacrificing the strong attributes of the original PSL algorithm,
such as the model free design, few parameters and progressively growing representations,
FPSL was designed.
Expressing PSL with Fuzzy Logic is in many ways a natural extension and generalization
of the discrete algorithm. By using a discrete uniform membership function E and a max
operator for defuzzification, FPSL becomes very similar to DPSL. Even though the processing
of continuous values does add significant processing requirements in comparison to DPSL,
FPSL can still be efficiently implemented as a fuzzy rule controller.

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

122

Robot Learning from Demonstration using Predictive Sequence Learning 13

1 2 3 4 5 6 7 8 9 10
Start position

0

2

4

6

8

10
N
u
m
b
e
r
o
f
su
cc
e
sf
u
l
ru
n
s

Fig. 3. Results from test runs in simulated environment (Section 3.2). Each bar corresponds to
one starting position, see Figure 1. The green part of the bar represents number of successful
runs where the robot reached and stopped at the target position in front of the TV. The
yellow part represents runs when the robot successfully reached the target, but did not stop.
The test was executed 10 times from each starting position.

The evaluation shows that FPSL produces significantly smaller prediction errors in relation to
the coverage than DPSL (Section 3.1). This was expected since FPSL can be trained to produce
small prediction errors by keeping a high precision constant α̂, while the coverage is still kept
high by using a large ε. In contrast, when using DPSL, one must choose between a small
prediction error with low coverage or a high coverage at the price of an increased prediction
error. As can be seen in Figure 2, FPSL is also affected by the precision/coverage tradeoff, but
not nearly as much as DPSL. Furthermore, the number of generated hypotheses will increase
with α̂, which also has a positive effect on coverage for multidimensional data.
While FPSL performs much better than DPSL on large and multidimensional state spaces, it
should not be seen as a general solution to the dimensionality problem. The increased number
of hypotheses results in increased processing and memory requirements. Furthermore, FPSL
is still not able to ignore uncorrelated dimensions in data, making it subject to the curse
of dimensionality. One potential solution is to modify the size of membership functions in
relation to the information content of the dimension. However, initial tests did not produce
satisfying results and further experiments in this direction were postponed to future work.

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

123

14 Robot Control

We found the results from the controller evaluation very promising (Section 3.2). The
application environment has been scaled up significantly in comparison to previous work
(Billing et al., 2011) and we are now able to perform learning in a fairly realistic setting.
When observing these results one should remember that PSL does not solve a spatial task.
There is no position sensor or internal map of the environment and the robot is still able to
navigate from almost any position in the environment, to a specific target location. The goal
is better described as an attractor in a dynamic system, where the robot in interaction with the
environment finally reaches a stable state in front of the TV (Figure 1).
An interesting observation is that it is often difficult to predict how well PSL will be able
to handle a specific situation. For example, starting position 6 was not passed during any
demonstration, but PSL still managed to control the robot such that it reached the target in 7
out of 10 test runs. On the other hand, position 5 and 10 produced worse results than expected.
Even though these starting positions were spatially close to several positions passed during
the demonstrations, the directions at which the robot reached these positions were different,
producing different laser scans, and PSL could consequently not find a suitable match. In
some of the cases, inappropriate matches were found and the robot turned in the wrong
direction. In other cases, no match at all was found causing the robot to fall back on the
reactive controller for a longer period and usually getting stuck in a corner.
The amount of training data used in this evaluation was fairly small. Only one demonstration
from each starting position was performed. One reason why FPSL is able to solve the task
despite the small amount of training is that all data potentially contribute to every action
selection, independently of where in the demonstration it originally took place. Techniques
that represent the whole behavior as a sequence with variations, typically require more
training since information from the beginning of the demonstration does not contribute to
action selection in other parts of the behavior. PSL does not relies on common features within
a set of demonstrations and consequently does not require that demonstrations are compared
or temporally aligned, see Section 1. In its current design, PSL is of course unable to perform
a program-level imitation since it always rely on sensory-motor events, but it does not suffer
from a large diversity in the demonstration set as long as the recent sensory-motor events bear
necessary information to select a suitable action.

4.1 Conclusions and future work
In this chapter, we show that PSL can be used as a method for LFD, in a fairly realistic
setting. The move from a discrete state space used in previous work to the continuous state
space appears to have a positive effect on generalization ability and prediction performance,
especially on multi-dimensional data. The next step is to conduct experiments with the
physical Kompai robot (Robosoft, 2010) in an attempt to verify the results in the real world.
The fuzzy version of PSL proposed here, and specifically the introduction of context sets C,
should be seen as one step towards integrating PSL in a hierarchical architecture. The higher
level controller may be another instance of PSL working on a lower temporal resolution, or a
completely different control system interacting with PSL by changing the responsibility λt (C)
for each context (Equation 5). For an actual interaction to take place, PSL also has to feed
information upwards, to higher level controllers. In previous work on behavior recognition
(Billing et al., 2010), we have shown that PSL can be used to compute a bottom-up signal
providing information about how well each context corresponds to present circumstances.
While this has not been the focus of this chapter, we intend to evaluate these aspects of PSL in
future work.

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

124

Robot Learning from Demonstration using Predictive Sequence Learning 15

5. References

Alissandrakis, A., Nehaniv, C. L. & Dautenhahn, K. (2002). Imitation With ALICE: Learning
to Imitate Corresponding Actions Across Dissimilar Embodiments, IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans 32: 482–496.

Alissandrakis, A., Nehaniv, C. L., Dautenhahn, K. & Saunders, J. (2005). An Approach
for Programming Robots by Demonstration: Generalization Across Different Initial
Configurations of Manipulated Objects, Proceedings of 2005 International Symposium on
Computational Intelligence in Robotics and Automation, Ieee, Espoo, Finland, pp. 61–66.

Argall, B. D., Chernova, S., Veloso, M. & Browning, B. (2009). A survey of robot learning from
demonstration, Robotics and Autonomous Systems 57(5): 469–483.

Arkin, R. C. (1998). Behaviour-Based Robotics, MIT Press.
Billard, A., Epars, Y., Cheng, G. & Schaal, S. (2003). Discovering imitation strategies through

categorization of multi-dimensional data, Proceedings of the 2003 IEEE/RSJ Intl.
Conference on Intelligent Robots and Systems, Vol. 3, Las Vegas, Nevada, pp. 2398–2403
vol.3.

Billing, E. A. (2009). Cognition Reversed - Robot Learning from Demonstration, Lic. thesis, Umeå
University, Department of Computing Science, Umeå, Sweden.

Billing, E. A. (2011). www.cognitionreversed.com.
Billing, E. A. & Hellström, T. (2010). A Formalism for Learning from Demonstration, Paladyn:

Journal of Behavioral Robotics 1(1): 1–13.
Billing, E. A., Hellström, T. & Janlert, L. E. (2010). Behavior Recognition for Learning

from Demonstration, Proceedings of IEEE International Conference on Robotics and
Automation, Anchorage, Alaska.

Billing, E. A., Hellström, T. & Janlert, L. E. (2011). Predictive learning from demonstration, in
J. Filipe, A. Fred & B. Sharp (eds), Agents and Artificial Intelligence, Springer Verlag,
Berlin, pp. 186–200.

Brass, M., Bekkering, H., Wohlschläger, A. & Prinz, W. (2000). Compatibility between
observed and executed finger movements: comparing symbolic, spatial, and
imitative cues., Brain and cognition 44(2): 124–43.

Brooks, R. A. (1986). A Robust Layered Control System For A Mobile Robot, IEEE Journal of
Robotics and Automation 2(1): 14–23.

Brooks, R. A. (1991). New Approaches to Robotics, Science 253(13): 1227–1232.
Byrne, R. W. & Russon, A. E. (1998). Learning by Imitation: a Hierarchical Approach, The

Journal of Behavioral and Brain Sciences 16(3).
Calinon, S. (2009). Robot Programming by Demonstration - A Probabilistic Approach, EFPL Press.
Calinon, S., Guenter, F. & Billard, A. (2007). On Learning, Representing and Generalizing a

Task in a Humanoid Robot, IEEE Transactions on Systems, Man and Cybernetics, Part B.
Special issue on robot learning by observation, demonstration and imitation 37(2): 286–298.

de Rengervé, A., D’halluin, F., Andry, P., Gaussier, P. & Billard, A. (2010). A study
of two complementary encoding strategies based on learning by demonstration
for autonomous navigation task, Proceedings of the Tenth International Conference on
Epigenetic Robotics, Lund, Sweden.

Demiris, J. & Hayes, G. (1997). Do robots ape?, Proceedings of the AAAI Fall Symposium on
Socially Intelligent Agents, pp. 28–31.

Demiris, J. & Hayes, G. R. (2002). Imitation as a dual-route process featuring predictive and learning
components: a biologically plausible computational model, MIT Press, pp. 327–361.

Demiris, Y. (1999). Movement Imitation Mechanisms in Robots and Humans, PhD thesis,
University of Edinburgh.

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

125

16 Robot Control

Demiris, Y. & Johnson, M. (2003). Distributed, predictive perception of actions: a
biologically inspired robotics architecture for imitation and learning, Connection
Science 15(4): 231–243.

Fullér, R. (1995). Neural Fuzzy Systems, Abo Akademi University.
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (1996). Action recognition in the premotor

cortex, Brain 119(2): 593–609.
Haruno, M., Wolpert, D. M. & Kawato, M. M. (2001). MOSAIC Model for Sensorimotor

Learning and Control, Neural Comput. 13(10): 2201–2220.
Klir, G. J. & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall.
Matarić, M. J. (1997). Behavior-Based Control: Examples from Navigation, Learning,

and Group Behavior, Journal of Experimental and Theoretical Artificial Intelligence
9(2-3): 323–336.

Matarić, M. J. (2002). Sensory-motor primitives as a basis for imitation: linking perception to action
and biology to robotics, MIT Press, pp. 391–422.

Matarić, M. J. & Marjanovic, M. J. (1993). Synthesizing Complex Behaviors by Composing
Simple Primitives, Proceedings of the European Conference on Artificial Life, Vol. 2,
Brussels, Belgium, pp. 698–707.

Microsoft (2011). Microsoft Robotic Developer Studio.
URL: http://www.microsoft.com/robotics/

Myers, B. C. S. & Rabiner, L. R. (1981). A Comparative Study of Several Dynamic
Time-Warping, The Bell System Technical Journal 60(7): 1389–1409.

Nehaniv, C. L. & Dautenhahn, K. (2000). Of hummingbirds and helicopters: An algebraic framework
for interdisciplinary studies of imitation and its applications, Vol. 24, World Scientific
Press, pp. 136–161.

Nehaniv, C. L. & Dautenhahn, K. (2001). Like Me? - Measures of Correspondence and
Imitation, Cybernetics and Systems 32: 11–51.

Nicolescu, M. (2003). A Framework for Learning from Demonstration, Generalization and Practice
in Human-Robot Domains, PhD thesis, University of Southern California.

Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G. & Matelli, M. (1988).
Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the
control of distal movements., Experimental brain research. Experimentelle Hirnforschung.
Expérimentation cérébrale 71(3): 491–507.

Rizzolatti, G. & Craighero, L. (2004). The Mirror-Neuron System, Annual Review of Neuroscience
27: 169–192.

Robosoft (2010). www.robosoft.com.
Robosoft (2011). Kompai Robot.
Rohrer, B. (2007). S-Learning: A Biomimetic Algorithm for Learning, Memory, and Control in

Robots, Kohala Coast, Hawaii, pp. 148 – 151.
Rohrer, B. & Hulet, S. (2006). BECCA - A Brain Emulating Cognition and Control Architecture,

Technical report, Cybernetic Systems Integration Department, Univeristy of Sandria
National Laboratories, Alberquerque, NM, USA.

Tani, J., Ito, M. & Sugita, Y. (2004). Self-Organization of Distributedly Represented Multiple
Behavior Schemata in a Mirror System : Reviews of Robot Experiments Using
RNNPB, Neural Networks 17: 1273–1289.

Wolpert, D. M. & Kawato, M. (1998). Multiple paired forward and inverse models for motor
control.

To appear in A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming. InTech.

126

VII

Paper VII

Simultaneous Control and Recognition of
Demonstrated Behavior

Erik Billing, Thomas Hellström, and Lars-Erik Janlert

Dept. Computing Science, Umeå University, SE-901 87 Umeå, Sweden
billing@cs.umu.se, thomash@cs.umu.se, and lej@cs.umu.se

www.cs.umu.se/research/robotics

Abstract: A method for Learning from Demonstration (LFD) is presented and eval-
uated on a simulated Robosoft Kompai robot. The presented algorithm, called Pre-
dictive Sequence Learning (PSL), builds fuzzy rules describing temporal relations be-
tween sensory-motor events recorded while a human operator is tele-operating the
robot. The generated rule base can be used to control the robot and to predict ex-
pected sensor events in response to executed actions. The rule base can be trained
under different contexts, represented as fuzzy sets. In the present work, contexts are
used to represent different behaviors. Several behaviors can in this way be stored in
the same rule base and partly share information. The context that best matches present
circumstances can be identified using the predictive model and the robot can in this
way automatically identify the most suitable behavior for precent circumstances. The
performance of PSL as a method for LFD is evaluated with, and without, contextual
information. The results indicate that PSL without contexts can learn and reproduce
simple behaviors. The system also successfully identifies the most suitable context
in almost all test cases. The robot’s ability to reproduce more complex behaviors,
with partly overlapping and conflicting information, significantly increases with the
use of contexts. The results support a further development of PSL as a component of
a dynamic hierarchical system performing control and predictions on several levels of
abstraction.

Keywords: Behavior Recognition, Context Dependent, Fuzzy Logic, Learning and
Adaptive Systems, Learning from Demonstration

129

130

Simultaneous Control and Recognition of
Demonstrated Behavior

Erik Billing∗, Thomas Hellström†and Lars-Erik Janlert‡
Department of Computing Science

Umeå University, Sweden

Abstract

A method for Learning from Demonstration (LFD) is presented and
evaluated on a simulated Robosoft Kompai robot. The presented algo-
rithm, called Predictive Sequence Learning (PSL), builds fuzzy rules de-
scribing temporal relations between sensory-motor events recorded while
a human operator is tele-operating the robot. The generated rule base
can be used to control the robot and to predict expected sensor events
in response to executed actions. The rule base can be trained under dif-
ferent contexts, represented as fuzzy sets. In the present work, contexts
are used to represent different behaviors. Several behaviors can in this
way be stored in the same rule base and partly share information. The
context that best matches present circumstances can be identified using
the predictive model and the robot can in this way automatically identify
the most suitable behavior for precent circumstances. The performance of
PSL as a method for LFD is evaluated with, and without, contextual in-
formation. The results indicate that PSL without contexts can learn and
reproduce simple behaviors. The system also successfully identifies the
most suitable context in almost all test cases. The robot’s ability to re-
produce more complex behaviors, with partly overlapping and conflicting
information, significantly increases with the use of contexts. The results
support a further development of PSL as a component of a dynamic hi-
erarchical system performing control and predictions on several levels of
abstraction.

Index terms: Behavior Recognition, Context Dependent, Fuzzy Logic, Learn-
ing and Adaptive Systems, Learning from Demonstration
∗Erik Billing (billing@cs.umu.se)
†Thomas Hellström (thomash@cs.umu.se)
‡Lars-Erik Janlert (lej@cs.umu.se)

1

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

131

1 Introduction
Learning from Demonstration (LFD) is a well-established technique for teaching
robots new behaviors. One of the greatest challenges in LFD is to implement a
learning algorithm that allows the robot pupil to generalize a sequence of actions
demonstrated by the teacher such that the robot is able to perform the desired
behavior under varying conditions. In earlier work (Billing et al., 2010b, 2011),
we have developed and evaluated the algorithm Predictive Sequence Learning
(PSL) as a method for LFD. PSL can be trained from demonstrations performed
via tele-operation and used as a controller for robots. The algorithm treats
control as a prediction problem, such that the next action is selected based on
the sequence of recent sensory-motor events. In addition, PSL also produces
predictions of expected sensor states. While these are not directly useful for
control, predictions of sensor states appear to serve well as a method for behavior
recognition (Billing et al., 2010a).

Here, we evaluate the possibility to use a context layer that interacts with
the PSL algorithm, both during learning and reproduction of behaviors. The
context layer activates relevant parts of the PSL knowledge base while inhibiting
knowledge that could interfere with the current behavior, potentially allowing
PSL to learn and reproduce more complex behaviors. The work can be seen as
one step towards integrating PSL in a dynamic hierarchical learning system.

An introduction to LFD and hierarchical learning systems is presented in
Section 2, followed by a more precise problem statement in Section 3. The PSL
algorithm is presented in Section 4 and the problem of knowledge interference
is described in Section 5. The experimental setup used for the present work is
described in Section 6 and a formulation of expected results is given in Section
7. Finally, results are presented in Section 8 followed by a discussion in Section
9.

2 Background
One common approach to LFD is to map the demonstration onto a set of pre-
programmed or previously learned primitives controllers (Billing & Hellström,
2010). The approach has strong connections to behavior-based architectures
(Matarić & Marjanovic, 1993; Matarić, 1997; Arkin, 1998) and earlier reactive
approaches (e.g. Brooks, 1986, 1991). When introducing behavior primitives,
the LFD process can be divided into three tasks (Billing & Hellström, 2010):

1. Behavior segmentation where a demonstration is divided into smaller seg-
ments.

2. Behavior recognition where each segment is associated with a primitive
controller.

3. Behavior coordination, referring to identification of rules or switching con-
ditions for how the primitives are to be combined.

2

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

132

The approach represents one way of introducing good bias in learning and solve
the generalization problem by relying on previously acquired behavioral knowl-
edge. While there are many domain specific solutions to each one of these three
subproblems, they appear very difficult to solve in the general case.

One argument for the use of behavior primitives in LFD is that known behav-
iors can constitute parts (i.e., primitives) of other, more complex, behaviors. If
this process can be implemented in a general way, it would allow learnt behaviors
to act as primitives in future learning sessions. The approach would potentially
allow the robot to learn increasingly complex behaviors as its knowledge base
grows, producing an hierarchical architecture of controllers (Byrne & Russon,
1998). While this approach appears to have great potential, it requires that not
only pre-programmed primitives, but also controllers generated through learn-
ing, can be recognized as parts of a demonstrated behavior.

This approach has many connections to biology and specifically the mirror
system (e.g. Rizzolatti et al., 1988; Gallese et al., 1996; Brass et al., 2000; Riz-
zolatti & Craighero, 2004). While the role of the mirror system is still highly
debated, several groups of researchers propose computational models where per-
ception and action are tightly interweaved. Among the most prominent exam-
ples are the work by Demiris & Khadhouri (2006) proposing an architecture
called Hierarchical Attentive Multiple Models for Execution and Recognition
(HAMMER). A similar theoretical framework is presented by Haruno et al.
(2003) under the name Hierarchical Modular Selection and Identification for
Control (HMOSAIC). Both these architectures implement a set of modules,
where each module is an inverse model (controller) paired with a forward model
(predictor). The inverse and forward models are trained together such that the
forward model can predict sensor data in response to the actions produced by
the inverse model. The inverse model is tuned to execute a certain behavior
when the forward model produces good predictions. The prediction error is
used to compute a bottom-up signal for each module. Based on the bottom-up
signal, a top-down responsibility signal or confidence value is computed and
propagated to each module. The output of the system is a combination of the
actions produced by each inverse model, proportional to their current responsi-
bility. The responsibility signal also controls the learning rate of each module,
such that modules are only updated when their responsibility is high. In this
way, modules are tuned to a specific behavior or parts of a behavior. Since
the prediction error of the forward model is used as a measure of how well the
specific module fits present circumstances, it can be seen as a metric of im-
itation (Billard et al., 2003) that is learnt together with the controller. The
architecture can be composed into a hierarchical system where modules are or-
ganized in layers, with the lowest layer interacting with sensors and actuators.
The bottom-up signal constitutes sensor input for the layer above and actions
produced by higher levels constitute the top-down responsibility signal.

One motivation for this architecture lies in an efficient division of labor be-
tween different parts of the system. Each module can be said to operate at a
specific temporal resolution. Modules at the bottom layer are given the highest
temporal resolution while modules higher up in the hierarchy have decreasing

3

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

133

resolution, allowing these modules to express dependencies over longer periods
of time. State variables that change slowly compared to a specific module’s res-
olution are ignored by that module and are instead handled by modules higher
up in the hierarchy. Slowly changing states that lead to high responsibility for
the module is referred to as the module’s context. In a similar fashion, variables
that change fast in relation to the temporal resolution are handled lower in the
hierarchy. This allows each module to implement a controller where the behavior
depends on relatively recent states, at its level of temporal resolution. Long tem-
poral dependencies are modeled by switching between modules, which removes
the requirement for each model to capture these dependencies. Furthermore,
updates of a single behavior or parts of a behavior will only require updates of
a few modules and will not propagate changes to other modules. See Billing
(2009) for a longer discussion on these aspects of hierarchical architectures.

The HAMMER and MOSAIC architectures make few restrictions on what
kind of controllers each module should implement. We argue however, that
modules should be semi-reactive, meaning that action selection and predictions
of sensor events should be based on recent sensor and motor events. Strictly
reactive modules are not desirable since each module must be able to model any
dependency with a temporal resolution too high for modules at the layer above.

However, the division of behavior into modules also has a number of draw-
backs. The possibility for the system to share knowledge between behaviors is
limited. Moreover, the system has to combine actions produced by different
modules, which may be difficult in cases when more than one module receives
high responsibility.

One architecture with similarities to HAMMER and MOSAIC able to share
knowledge between different behaviors is Recurrent Neural Network with Para-
metric Bias (RNNPB) (Tani et al., 2004). Both input and output layer of the
network contain sensor and motor nodes as well as nodes with recurrent connec-
tions. In addition, the input layer is given a set of extra nodes, representing the
PB vector. The network is trained to minimize prediction error, both by train-
ing the network using back-propagation and by changing the PB input vector.
The PB vector is however updated slowly, such that it organizes into what could
be seen as a context layer for the rest of the network. In addition to giving the
network the ability to represent different behaviors that share knowledge, the
PB vector can be used for behavior recognition.

All these architectures can be seen as examples of a larger body of work em-
ploying the motor system for perception and imitation (e.g. Atkeson & Schaal,
1997; Billard, 2001; Demiris & Hayes, 2002; Demiris & Johnson, 2003; Alis-
sandrakis et al., 2002; George, 2008), with an emphases on being biologically
plausible. While there are many important differences between these works,
both in proposed architectures and the claims that they make, there is also a
significant common ground. One attempt to describe this common ground was
made by Billing (2009), proposing four criteria for general learning ability:

1. Hierarchical structures

Knowledge gained from learning should be represented in hierarchies.

4

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

134

2. Functional specificity

Knowledge gained from learning should be organized in functionally spe-
cialized modules.

3. Forward and inverse

Prediction error reflects how well the state definition satisfies the Markov
assumption, and by consequence a forward model can be used to improve
knowledge representation when paired with an inverse model.

4. Bottom-up and top-down

Both bottom-up and top-down signals must be propagated through the
hierarchical structure. Bottom-up signals represent the state of modules,
and the top-down signals specify context.

These criteria can be seen as typical properties of a system able to internalize
a simulation of percepts, in response to actions. That should be understood as
one way to give the robot an inner world, a simulation of the physical world that
does not rely on a pre-defined physics simulator but is generated from interac-
tions with the world. Such a simulation is inherently grounded in the robot’s
sensors and actuators and is therefore not subject to the symbol grounding
problem (Harnad, 1990). A minimalistic implementation of this approach can
be found in the work by Ziemke et al. (2005). This approach also has tight con-
nections with the work by Barsalou and colleagues (e.g. Barsalou et al., 2003;
Barsalou, 2009), describing the brain as a system simulating sensor percepts in
relation to motor activity.

Rohrer & Hulet (2006) proposed an architecture called Brain Emulating Cog-
nition and Control Architecture (BECCA). The focus of BECCA was to capture
the discrete episodic nature of many types of human motor behavior, while lim-
iting the use of task-specific prior knowledge. BECCA was presented as a very
general reinforcement learning system, applicable to many types of learning and
control problems. One of the core elements of BECCA is the temporal difference
(TD) algorithm Sequence Learning (SL) (Rohrer, 2007; Rohrer et al., 2009). SL
builds sequences of passed events which is used to predict future events, and
can in contrast to other TD algorithms base its predictions on a sequence of
previous states.

3 Problem statement
Inspired by BECCA (Rohrer & Hulet, 2006) and specifically SL (Rohrer, 2007;
Rohrer et al., 2009), we developed the PSL algorithm as a method for LFD
(Billing et al., 2010a,b). PSL has many interesting properties seen as a learn-
ing algorithm for robots. It is model free, meaning that it introduces very few
assumptions into learning and does not need any task specific configuration.
PSL can be seen as a variable-order Markov model. Starting out from a reac-
tive (first-order) model, PSL estimates transition probabilities between discrete

5

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

135

sensory-motor states. For states that do not show Markov property, the order
is increased and PSL models the transition probability based on several passed
events. In this way, PSL will progressively gain memory for parts of the behavior
that cannot be modeled in a reactive way.

While previous evaluations of PSL (Billing et al., 2010a,b, 2011) show that
the algorithm can be used both for control and recognition of several different
behaviors, PSL is subject to combinatorial explosion when the demonstrated
behavior requires modeling of long temporal dependencies. PSL can however
efficiently model short temporal dependencies in a semi-reactive way and is a
good candidate for implementation of forward and inverse models in an ar-
chitecture similar to those described above. The fact that PSL is not able to
implement an arbitrary controller is here seen as an important bias and serves as
a way to get around the “no free lunch” theorems (Wolpert & Macready, 1997;
Ho & Pepyne, 2002). In the present work we combine PSL control with behavior
recognition in order to reduce these limitations and take one step closer to a
hierarchical learning systems satisfying all criteria for general learning ability
(Section 2).

4 Predictive Sequence Learning
PSL builds fuzzy rules, referred to as hypotheses h, describing temporal depen-
dencies between a sensory-motor event et+1 and a sequence of passed events(
et−|h|+1, et−|h|+2, . . . , et

)
, defined up until current time t.

h :
(

Υt−|h|+1 is E
h
|h| ∧Υt−|h|+2 is E

h
|h|−1 ∧ . . . ∧Υt is E

h
1

)
⇒ Υt+1 is Ē

h.

(1)
Υi is the event variable and Eh (e) is a fuzzy membership function returning

a membership value for a specific e. The right hand side Ēh is a membership
function comprising expected events at time t + 1. |h| denotes the length of
h, i.e., the number of left-hand-side conditions of the rule. Both E and Ē are
implemented as standard cone membership functions with base width ε (e.g.
Klir & Yuan, 1995).

A set of hypotheses can be used to compute a prediction êt+1 given a se-
quence of passed sensory-motor events η, defined up to the current time t:

η = (e1, e2, . . . , et) . (2)

The process of matching hypotheses to data is described in Section 4.1. The
PSL learning process, where hypotheses are generated from a sequence of data,
is described in Section 4.2 and interaction with the context layer is described
in Section 4.3. The description of PSL given here is similar, but not identical,
to Fuzzy PSL as described in our previous evaluation of this algorithm (Billing
et al., 2011). A few changes to the algorithm was introduced as a result of
optimizations made in order to allow on-line predictions with multiple contexts.
These changes are further discussed in Section 4.4.

6

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

136

4.1 Matching hypotheses
Given a sequence of sensory-motor events η (Equation 2), a match αt (h) of the
rule is given by:

αt (h) =
|h|−1∧
i=1

Ehi (et−i+1) (3)

where ∧ is implemented as a min-function.
Hypotheses are grouped in fuzzy sets C whose membership value C (h) de-

scribes the confidence of h at time t:

C (h) =

t∑
k=th

αk (h) Ēh (ek+1)

t∑
k=th

αk (h)
(4)

where th is the creation time of h or 1 if h existed prior to training. I.e., C (h) is
a weighted average of how well the h predicts the event ek+1, over all observation
up to time t. Each set C represents a context and can be used to implement a
specific behavior or part of a behavior. The responsibility signal λt (C) is used
to control which behavior is active at a specific time. The combined confidence
value C̃t (h), for hypothesis h, is a weighted average over all C:

C̃t (h) =

∑
C

C (h)λt (C)∑
C

λt (C)
. (5)

C̃t can be seen as a fuzzy set representing the active context at time t.
Hypotheses contribute to a prediction in proportion to their membership in C̃
and the match set M̂ . M̂ is defined in three steps. First, longest matching
hypotheses are selected:

M = {h | |h| ≥ |h′| for all {h′ | α (h′) > 0}} . (6)

The best matching h ∈M is selected:

M̃ = {h | α (h) ≥ α (h′) for all {h′ ∈M}} . (7)

Finally, the match set M̂ is defined as:

M̂ (h) =

{
C̃ (h)

0
h ∈ M̃

otherwise
. (8)

The aggregated prediction Ê (et+1) is computed using the Larsen method
(e.g. Fullér, 1999):

Ê (et+1) =
∨
h

Ēh (et+1) M̂ (h) . (9)

7

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

137

Ê is converted to crisp values using a center of max defuzzification (e.g. Klir
& Yuan, 1995, p. 337):

ê =
min

{
e | Ê (e) = max

(
Ê
)}

+ max
{
e | Ê (e) = max

(
Ê
)}

2
. (10)

4.2 Generating hypotheses
Hypotheses can be generated from a sequence of sensory-motor events η. During
training, PSL continuously makes predictions and creates new hypotheses when
no matching hypothesis produces the correct prediction Ē. The exact training
procedure is described in Algorithm 1.

For example, consider the event sequence η = abccabccabcc. Let t = 1. PSL
will search for a hypothesis with a left hand side matching a. Initially, the
context set C is empty and PSL will create a new hypothesis (a) ⇒ b which is
added to C with confidence 1, denoted C (a⇒ b) = 1. The same procedure will
be executed at t = 2 and t = 3 such that C ((b)⇒ c) = 1 and C ((c)⇒ c) = 1.
At t = 4, PSL will find a matching hypothesis (c) ⇒ c producing the wrong
prediction c. Consequently, a new hypothesis (c)⇒ a is created and confidences
are updated such that C ((c)⇒ c) = 0.5 and C ((c)⇒ a) = 1. The new hypoth-
esis receives a higher confidence since confidence values are calculated from the
creation time of the hypothesis (Equation 4). The predictions at t = 5 and t = 6
will be correct and no new hypotheses are created. At t = 7, both (c)⇒ a and
(c) ⇒ c will contribute to the prediction Ê. Since the confidence of (c) ⇒ a is
higher than that of (c) ⇒ c, Ê will defuzzify towards a, producing the wrong
prediction (Equation 10). As a result, PSL creates a new hypothesis (b, c)⇒ c.
Similarly, (c, c) ⇒ a will be created at t = 8. PSL is now able to predict all
elements in the sequence perfectly and no new hypotheses are created.

Source code from the implementation used in the present work is available
online (Billing, 2011).

4.3 Computing context responsibility
PSL is not only used as a controller but also as a method for behavior recogni-
tion. By letting PSL compute one prediction for each context, the responsibility
of each context can be changed based on the size of respective prediction error.
The method used here has strong similarities with the responsibility update
mechanism used in the MOSAIC architecture (Haruno et al., 2001). Similar
mechanisms can also be found in other learning and control frameworks with
hierarchical structure (e.g. Demiris & Khadhouri, 2006).

One important difference between PSL and most other approaches is however
that the context layer of PSL allows partial knowledge overlap between contexts.
Furthermore, this overlap may be fuzzy in the sense that each hypothesis is a
member of the context to a certain degree. This allows a much more flexible or-
ganization of knowledge compared to an architecture that requires each module

8

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

138

Algorithm 1 Predictive Sequence Learning (PSL)
Require: ψ = (e1, e2, . . . , eT) where T denotes the length of the training set
Require: α̂ as the precision constant, see text

1: let t← 1
2: let η = (e1, e2, . . . , et)
3: let C ← ∅
4: let Ê as Equation 9
5: if Ê (et+1) < α̂ then
6: let hnew = CreateHypothesis (η, C) as defined by Algorithm 2
7: C (hnew)← 1
8: end if
9: Update confidences C (h) as defined by Equation 4

10: set t = t+ 1
11: if t<T then
12: goto 2
13: end if

Algorithm 2 CreateHypothesis
Require: η = (e1, e2, . . . , et)
Require: C : h→ [0, 1]
Require: α as defined by Equation 3

1: let M̂ (h) as Equation 8
2: let M̄ =

{
h | Ēh (et+1) ≥ α̂ ∧ M̂ (h) > 0

}
where α̂ is the precision constant,

see Section 4.4
3: if M̄ = ∅ then
4: let E∗ be a new membership function with center et and base ε
5: return hnew : (Υt is E

∗)⇒ Υt+1 is Ē
6: else
7: let h̄ ∈ M̄
8: if C

(
h̄
)

= 1 then
9: return null

10: else
11: let E∗ be a new membership function with center et−|h̄| and base ε

12: return hnew :
(

Υt−|h̄| is E
∗,Υt−|h̄|+1 is E

h̄

|h̄|−1
, . . . ,Υt is E

h̄
0

)
⇒

Υt+1 is Ē
13: end if
14: end if

9

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

139

to be strictly separated from other modules. Several contexts may also be active
simultaneously, without the need for a separate action coordination mechanism.

Let the ÊCt be the prediction for context C at time t, as given by Equation
9. The prediction for each context is calculated with the responsibility signal
λt (C) = 1 and the responsibility of all other contexts equal to zero (see Equation
5). Based on these predictions, the responsibility signal for each context is
updated using Bayes’ rule:

λt (C) =
λt−1 (C) exp

(
(EC

t (et)−1)2

2σ2

)
N∑
i=1

[
λt−1 (Ci) exp

(“
E

Ci
t (et)−1

”2

2σ2

)] (11)

where et represents the observed sensory-motor event at time t. N is the
number of contexts and σ2, corresponding to the variance, is used as a scaling
constant controlling the size of confidence changes in relation to prediction error
size.

4.4 Parameters and implementation
A clear description of parameters is important for any learning algorithm. Pa-
rameters always introduce the risk that the learning algorithm is tuned towards
the evaluated task, producing better results than it would in the general case.
We have therefore strived towards limiting the number of parameters of PSL.
The original design of PSL was completely parameter free, with the exception
that continuous data was discretized using some discretization method. The
version of PSL proposed here can be seen as a generalization of the original al-
gorithm (Billing et al., 2010b,a) where the width ε of the membership function
E determines the discretization resolution. In addition, a second parameter is
introduced, referred to as the precision constant α̂. α̂ is with fuzzy logic ter-
minology an α-cut, i.e., a threshold over the fuzzy membership function in the
interval [0, 1] (e.g., Klir & Yuan, 1995).

ε controls how generously PSL matches hypotheses. A high ε makes the
algorithm crisp but typically increases the precision of predictions when a match
is found. Conversely, a low ε reduces the risk that PSL reaches unobserved states
at the cost of a decreased prediction performance. The high value of ε can be
compared to a fine resolution data discretization for the previous version of PSL.

α̂ is only used during learning, controlling how exact a specific Ē has to
be before a new hypothesis with a different Ē is created. A large α̂ reduces
prediction error but typically results in more hypotheses being created during
learning.

Both ε and α̂ control the tolerance to random variations in data and can
be set based on how precise we want that PSL to model the data. Small ε in
combination with large α̂ will result in a model that closely fits training data,
typically producing small prediction errors but also requires more training data
in order to cover the state space.

10

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

140

Updates of the responsibility signal (Equation 11) introduces a third param-
eter (the variance σ2) scaling the prediction error and consequently controlling
how quickly the responsibility signal changes. While this parameter could be
estimated form actual data, it was manually set to a fixed value in the present
work.

The original implementation of Fuzzy PSL (Billing et al., 2011) requires that
the prediction for each context is computed separately, significantly increasing
the computational load for each new context. For the present work, the algo-
rithm was therefore reimplemented such that a majority of computations to be
shared for all contexts, resulting in a minor extra load when multiple contexts
are used. Even though no deeper study comparing the two versions of the algo-
rithm has been made, our initial tests did not indicate any significant difference
other than reduced computational requirements. In earlier work (Billing et al.,
2010b,a), we used a discrete version of PSL that however differs from the present
algorithm in several ways. See Billing et al. (2011) for details.

5 Knowledge interference
In early evaluations of PSL (Billing et al., 2010a,b), we noticed that increased
training could affect the performance in both a positive and a negative way. On
the positive side, more demonstrations provide more sensory-motor patterns
that PSL can reuse in many situations. As long as the local sensory-motor his-
tory provides enough information to reliably separate between two situations,
more training is always positive. However, when the recent sensory-motor his-
tory does not provide reliable information to select the right action, PSL pro-
duces longer hypotheses in order to increase prediction performance. While this
in itself is not a large problem, it increases the risk for inappropriate action
selection when PSL is used as a controller. If the current sensory-motor history
does not match any long hypothesis, PSL falls back on shorter, less reliable, hy-
potheses. As a result, PSL sometimes selects an inappropriate action. We call
this problem knowledge interference, since knowledge of one behavior or part of
a behavior is interfering with the behavior currently being executed.

One potential solution to this problem is to separate behavioral knowledge
into several contexts, and let a behavior recognition mechanism select one or
several context that should be responsible for the present situation. Hypotheses
that are strongly associated with the active contexts are prioritized over other
hypotheses, and hypotheses that would have interfered with the current behavior
can in this way be ignored. This can be seen as one way to achieve the criterion
of Functional specificity presented in Section 2.

We have previously evaluated several techniques for behavior recognition
(Billing & Hellström, 2008) and also shown that PSL can be used for behavior
recognition (Billing et al., 2010a), based on the same model as used for control.
We are however not aware of any previous work that connects the behavior
recognition capabilities of PSL with a PSL based controller, such that the robot
can continuously evaluate the responsibility of each context and in this way

11

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

141

reduce the problem of knowledge interference.

6 Experimental setup
In order to evaluate PSL, a simulated Robosoft Kompai robot (Robosoft, 2011)
was used in the Microsoft RDS simulation environment (Microsoft, 2011). The
270 degree laser scanner of the Kompai was used as source for sensor data
and the robot was controlled by setting linear and angular speeds. We used a
similar setup in previous work (Billing et al., 2011) and here extend earlier tests
to include the new features of PSL.

Demonstrations were performed via tele-operation using a joypad, while sen-
sor and motor data was recorded with a temporal resolution of 20 Hz. The di-
mensionality of the laser scanner was reduced to 20 dimensions using an average
filter. Angular and linear speeds were fed directly into PSL. ε was set to 0.8 m
for laser data and 0.1 m/s for motor data. α̂ = 0.95 was used for both sensor
and motor data and σ2 was set to 5.

In cases PSL does not find a match and is unable to produce a prediction, a
reactive obstacle avoidance was used to control the robot. While PSL normally
has full control over the robot, it can run into unknown states for a short periods
of time, usually when close to walls and obstacles. The obstacle avoidance can
in these cases prevent a collision. The robot may of course still have contact
with objects as long as PSL is in control.

Four behaviors were used, each one demonstrated ten times with some vari-
ations. Each behavior is described below. Numbered areas are illustrated in
Figure 1. The behaviors were intentionally designed to overlap, such that the
robot would experience similar situations in parts of several behaviors.

ToTV Started from various locations in the apartment (area 2, 4, 5, and 6)
and finished in front of the TV (area 1).

Wake Started close to the bed (area 3) and finished in the corridor (area 5).

ToKitchen Started in the hallway (area 7), made a left turn in the corri-
dor (area 5) followed by a right turn towards the kitchen, finally turning
around and stopping in the kitchen (area 2).

Serve Started in the kitchen (area 2), went clockwise around the table, slowly
passing by each chair one by one, through area 8, and back to the kitchen.
The behavior finished by turning around and stop.

6.1 Evaluation of simultaneous control and recognition
In order to test how well PSL could reproduce the demonstrated behaviors, and
generalize, ten test cases were designed.

Case 1 PSL was trained on demonstrations of the ToTV behavior. Tests are
made starting from area 3.

12

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

142

Figure 1: The simulated apartment environment used for evaluation. Num-
bered regions indicate critical areas used as reference for demonstrations and
reproduced behaviors (see text).

13

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

143

Case 2 PSL was trained on demonstrations from the ToTV and Wake behav-
iors. Tests were made starting form area 3.

Case 3 PSL was trained on demonstrations from the ToKitchen behavior. Tests
were made starting from area 7.

Case 4 PSL was trained on demonstrations from the Serve behavior. Tests
were made starting from area 2.

Case 5, 6, and 7 PSL was trained with demonstrations of all four behaviors.
The training data was not separated into different behaviors but trained
and represented as a single PSL context. Tests were made starting from
area 3 (case 5), area 7 (case 6) and area 2 (case 7).

Case 8, 9, and 10 PSL was trained on demonstrations from all four behav-
iors. The training data was separated into four different contexts, such
that each context represented one behavior. Behavior recognition was
used to continuously update the responsibility for each context. Tests
were made starting from area 3 (case 8), area 7 (case 9) and area 10 (case
7).

Apart from the demonstrated data, the robot did not get any information of
which behavior to execute at a certain time. When trained on more than one
behavior, PSL had to recognize the present starting location and use this infor-
mation to select the appropriate behavior.

6.2 Evaluation of behavior recognition during manual con-
trol

In addition to the evaluation described in the previous section, PSL was evalu-
ated as a method for behavior recognition during manual control. This can be
seen as an attempt to reproduce our previous results (Billing et al., 2010a) in a
more realistic setting.

A single demonstration was made starting from area 7, moving out of the
room and turning left towards area 6. After approximately 17 seconds, the
robot reaches area 3, turns around and goes back towards area 6, out of the
bedroom and reaches area 5 at t = 30 s. The robot continuous with the table
to its right, passes area 8 at t = 37 s and makes a right turn around the table
towards the kitchen. After 43 seconds of driving, the robot reaches the kitchen,
turns around, leaves the kitchen at t = 48 s and makes a second lap around the
table. When reaching area 8 for the second time (t = 56 s) the robot makes a
left turn towards the TV and parks in front of the TV after a total of 67 seconds
of driving.

7 Hypothesis
Since PSL represents behaviors as a semi-reactive controller, no specific coordi-
nation is required in order to merge two demonstrated behaviors. One example

14

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

144

when this is useful is when an existing behavior is to be extended to work in a
partly new environment. In order to evaluate this aspect of PSL, test cases 1
and 2 were designed. Since no demonstrations in the ToTV behavior was made
starting from the bed (area 3), test case 1 is expected to be a difficult task to
reproduce. In test case 2, the original demonstration set is however combined
with the demonstrated Wake behavior, showing how to exit the bedroom. The
performance of test case 2 is therefore expected to be significantly higher than
for case 1.

While the problem of knowledge interference (Section 5) may occur both
within and between behaviors, the risk clearly increases when the robot is
thought to act differently in several similar situations. Billing et al. (2010b)
successfully taught a Khepera robot three partial behaviors, but when they
were combined into a complete behavior, none of the partial behaviors could be
reproduced correctly. In the present work, we aim to reproduce this scenario
in a more realistic setting. Test cases 2, 3, and 4 represent three fairly sim-
ple behaviors that PSL should be able to reproduce when thought separately.
However, since the three behaviors have significant overlaps, knowledge of one
behavior may interfere with knowledge of another, and the performance of is
therefore expected to decrease when all behaviors are trained together (case 5,
6, and 7).

Test cases 8, 9, and 10 were designed to evaluate the effect of behavior
recognition during execution of the three different behaviors. If the behavior
recognition system works as intended, the performance of case 8, 9, and 10
should be significantly higher than for cases 5, 6, and 7, respectively.

8 Results
Results for all ten test cases are summarized in Table 1. In test case 1, the
robot were only able to exit the bedroom in 12 out of 20 runs, but reached the
TV (area 1) every time it exited the bedroom. In test case 6, the robot reached
the kitchen in 12 out of 20 runs, but took the right way only twice. During the
other 10 runs, the robot went around the table as demonstrated in the Serve
behavior, and in this way reached the kitchen. Similarly, in test case 9, the
robot reached the kitchen in 15 out of 20 runs, and took the demonstrated path
to the kitchen 13 times.

Figure 2 displays the responsibility signals from one execution of test case 8.
The robot starts from area 3 (see Figure 1) with initially equal responsibilities
for all four behaviors. The behavior recognition system quickly recognizes the
present situation as a Wake behavior and the robot consequently starts to ex-
ecute that behavior. The robot reaches area 5 after approximately 10 seconds.
When continuing through the corridor, the Wake behavior no longer matches
present circumstances causing a shift to the ToTV behavior. The robot also
passed by the corridor during the ToKitchen behavior, making that behavior
a possible candidate. Since the ToTV behavior had some demonstrations also
from area 6, it receives increased confidence earlier than ToKitchen. As a result,

15

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

145

ToTV takes control of the robot as the responsibility of the Wake behavior de-
creases, quickly suppressing ToKitchen. After approximately 20 seconds, when
the robot is passing by area 8, both ToTV and Serve have small prediction er-
rors, causing slight fluctuations of the responsibilities. The high prior for ToTV
will however cause the system to remain with that behavior. Finally, after ap-
proximately 30 seconds, the robot parks in front of the TV (area 1). Figure 3
displays the results from the evaluation of behavior recognition during manual
control (Section 6.2).

9 Discussion
On the whole, results presented in Section 8 match our expectations (Section 7).
Without the use of behavior recognition (case 5, 6 and 7), the robot successfully
reproduces the demonstrated behavior only in 17 out of 60 trails. This is a
clear case of what we call knowledge interference (Section 5) since the same
set of demonstrations, when divided up in different behaviors (case 2, 3 and 4),
resulted in successful reproductions in almost all trails. This problem is reduced
when behavior recognition is active (case 8, 9 and 10), increasing the correctly
reproduced trails to 45 out of 60.

The responsibility signals computed by the behavior recognition system (fig-
ures 2 and 3) is much more stable than previous evaluations have shown (Billing
et al., 2010a). We believe that this can partly be explained by the large dimen-
sionality of the laser scanner data, compared to the infrared proximity sensors of
the Khepera robot used in previous experiments. Another reason may be that
the fuzzy version of PSL used in this work produces smaller, and more reliable,
prediction errors than the discrete version of PSL previously used. See Billing
et al. (2011) for a comparison.

The results from behavior recognition during manual control (Figure 3) in-
dicate that the responsibility signal serves as an extra memory for PSL. During
t = 30 to 37s and t = 48 to 56s, the robot drives around the table in a similar
way as during both ToTV and Serve behaviors (see Section 6.2 for details). The
first episode is interpreted as a ToTV behavior while the Serve behavior receives
the highest responsibility during the second episode. The reason for this dif-
ference is that the responsibility of each context is updated based on its prior
responsibility (Equation 11), allowing the responsibilities to remain unchanged
as long as the most active context does not produce significantly larger predic-
tion errors than any other context. While this property may be a disadvantage
in some situations, we argue that it serves as a powerful way to activate rele-
vant parts of the PSL knowledge base based on information much further back
in time than PSL can represent using hypotheses alone. At the same time, the
reactive properties of the system remains. Even though the responsibilities for
the ToTV and Serve behaviors remain stable during the manual demonstration,
the system is able to reevaluate this interpretation as soon as the demonstrated
behavior is diverging from its expected path (e.g., t = 37 and t = 56).

One of the weak parts of the present approach is that it still relies on a

16

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

146

Test case Reached TV Reached Kitchen Fail
1: ToTV 12 0 8
2: ToTV + Wake 18 0 2
3: ToKitchen 0 19 1
4: Serve 0 19 1
5: All in one context 1 13 6
6: All in one context 5 2 (12) 3
7: All in one context 5 14 1
8: All in separate contexts 15 3 2
9: All in separate contexts 3 13 (15) 2
10: All in separate contexts 0 17 3

Table 1: Results for the ten test cases. 2011-11-16 16:24Lokarria Log file

Sida 1 av 1file:///Users/billing/Documents/INTRO/papers/PSL-Recog-2011/results/log.recog.FromBedToTv5.xml

Time (s)

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Wake

ToTheTV

ToTheKitchen

Serve

R
e
s
p
o
n
s
ib

il
it

y
 (
λ)

Figure 2: Typical responsibility signal from one execution of test case 8.2011-11-17 10:58Lokarria Log file

Sida 1 av 1file:///Users/billing/Documents/INTRO/papers/PSL-Recog-2011/results/log.recog.manual1.xml

Time (s)

0 10 20 30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

Wake

ToTheTV

ToTheKitchen

Serve

R
e
s
p
o
n
s
ib

il
it

y
 (
λ)

Figure 3: Responsibility signal during manual control of the robot (Section 6.2).

17

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

147

human to divide the demonstrated data in a way that reduces knowledge inter-
ference. We see no reason to believe that the human’s interpretation of what is
one behavior, and what is another, perfectly corresponds to the robot’s need to
categorize experiences. As a result, there may be other ways to divide the set
of demonstrations used in this work (a total of 40 demonstrations) such that
the results would be significantly better, or significantly worse. One way to get
away from this problem may be to identify contexts (Equation 4) automati-
cally, for example based on an entropy measure. While hypotheses frequently
selected in sequence should go into the same context, each context should keep
the amount of conflicting hypotheses low. This could possibly be formulated
as an optimization problem where the total entropy over all contexts is to be
minimized. Exploring this possibility to automatically identify contexts that
potentially could be interpreted as behaviors from a human’s point of view is
part of future work.

Another interesting feature of the architecture presented here is that it pro-
vides a clean interface to higher level control. From an engineering point of view,
PSL could be seen as a reactive layer, similar to the ones frequently used in hy-
brid systems, but with the ability to also feed information to the deliberating
parts of the system. PSL could consequently constitute both a semi-reactive
actuator layer and a sensor layer. Some research in this direction is already
taking place, PSL have for example been considered for integration with a high
level controller based on semantic networks (Fonooni et al., 2012).

The architecture could also be extended to a hierarchical structure with one
instance of PSL running on each layer in the system. The lowest layer would
interact with sensors and actuators of the robot. Layers higher up in the hier-
archy would interact with the responsibility signals of the layer directly below
and in this way affect the behavior of the system as a whole. The temporal
resolution of PSL would decrease upwards in the hierarchy, allowing hypotheses
on higher levels to extend over longer periods of time. Similarly to the hier-
archical architectures discussed in Section 1, information in form of prediction
errors would also be propagated as inputs to the layer directly above.

While a hierarchical version of PSL has many strong similarities with both
HAMMER (Demiris & Khadhouri, 2006) and HMOSAIC (Haruno et al., 2003)
there are also important differences. PSL contexts can share information in a
straightforward way, not directly possible with the strictly separated modules
proposed by HAMMER and HMOSAIC. We also make a emphasis on modules
that are semi-reactive, following the division of labor between layers presented
in Section 1. Both these properties are to large extent shared with RNNPB.
While a recurrent neural network could be expected to handle dimensionality
better than PSL, it may have drawbacks in the sense that it is more difficult to
progressively extend the models size in the way PSL does. We hope to be able
to conduct a comparison between PSL and RNNPB in future work.

18

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

148

References
Alissandrakis, A., Nehaniv, C. L., & Dautenhahn, K. (2002). Imitation With

ALICE: Learning to Imitate Corresponding Actions Across Dissimilar Em-
bodiments. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 32, 482–496.

Arkin, R. C. (1998). Behaviour-Based Robotics. MIT Press.

Atkeson, C. G. & Schaal, S. (1997). Robot learning from demonstration. In
D. H. Fisher Jr (Ed.), Proceedings of the 14th International Conference on
Machine Learning, number 1994 (pp. 12–20). Nashville.

Barsalou, L. W. (2009). Simulation, situated conceptualization, and predic-
tion. Philosophical Transactions of the Royal Society B: Biological Sciences,
364(1521), 1281–1289.

Barsalou, L. W., Simmons, K. W., Barbey, A. K., & Wilson, C. D. (2003).
Grounding conceptual knowledge in modality-specific systems. Trends in Cog-
nitive Sciences, 7(2), 84–91.

Billard, A. (2001). Learning motor skills by imitation: a biologically inspired
robotic model. Cybernetics and Systems, 32, 155–193.

Billard, A., Epars, Y., Cheng, G., & Schaal, S. (2003). Discovering imitation
strategies through categorization of multi-dimensional data. In Proceedings
of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems,
volume 3 (pp. 2398–2403 vol.3). Las Vegas, Nevada.

Billing, E. A. (2009). Cognition Reversed - Robot Learning from Demonstration.
Licentiate thesis, Umeå University, Department of Computing Science, Umeå,
Sweden.

Billing, E. A. (2011). www.cognitionreversed.com.

Billing, E. A. & Hellström, T. (2008). Behavior Recognition for Segmentation of
Demonstrated Tasks. In IEEE SMC International Conference on Distributed
Human-Machine Systems (pp. 228–234). Athens, Greece.

Billing, E. A. & Hellström, T. (2010). A Formalism for Learning from Demon-
stration. Paladyn: Journal of Behavioral Robotics, 1(1), 1–13.

Billing, E. A., Hellström, T., & Janlert, L. E. (2010a). Behavior Recognition for
Learning from Demonstration. In Proceedings of IEEE International Confer-
ence on Robotics and Automation Anchorage, Alaska.

Billing, E. A., Hellström, T., & Janlert, L. E. (2010b). Model-free Learning
from Demonstration. In J. Filipe, A. Fred, & B. Sharp (Eds.), Proceedings of
2nd International Conference on Agents and Artificial Intelligence (ICAART)
(pp. 62–71). Valencia, Spain.

19

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

149

Billing, E. A., Hellström, T., & Janlert, L. E. (2011). Robot Learning from
Demonstration using Predictive Sequence Learning. In A. Dutta (Ed.),
Robotic Systems - Applications, Control and Programming (to appear). In-
Tech.

Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibil-
ity between observed and executed finger movements: comparing symbolic,
spatial, and imitative cues. Brain and cognition, 44(2), 124–43.

Brooks, R. A. (1986). A Robust Layered Control System For A Mobile Robot.
IEEE Journal of Robotics and Automation, 2(1), 14–23.

Brooks, R. A. (1991). New Approaches to Robotics. Science, 253(13), 1227–
1232.

Byrne, R. W. & Russon, A. E. (1998). Learning by Imitation: A Hierarchical
Approach. The Journal of Behavioral and Brain Sciences, 16(3).

Demiris, J. & Hayes, G. R. (2002). Imitation as a dual-route process featuring
predictive and learning components: A biologically plausible computational
model. In K. Dautenhahn & C. L. Nehaniv (Eds.), Imitation in animals and
artifacts (pp. 327–361). Cambridge, MA, USA: MIT Press.

Demiris, Y. & Johnson, M. (2003). Distributed, predictive perception of ac-
tions: a biologically inspired robotics architecture for imitation and learning.
Connection Science, 15(4), 231–243.

Demiris, Y. & Khadhouri, B. (2006). Hierarchical attentive multiple models
for execution and recognition of actions. Robotics and Autonomous Systems,
54(5), 361–369.

Fonooni, B., Hellström, T., & Janlert, L. E. (2012). Learning High-Level Behav-
iors from Demonstration through Semantic Networks. In Proceedings of the
4th International Conference on Agents and Artificial Intelligence (ICAART)
(to appear) Vilamoura, Algarve, Portugal.

Fullér, R. (1999). Neural Fuzzy Systems. Physica-Verlag GmbH & Co.

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition
in the premotor cortex. Brain, 119(2), 593–609.

George, D. (2008). How the Brain might work: A Hierarchical and Temporal
Model for Learning and Recognition. Phd thesis, Stanford University.

Harnad, S. (1990). The Symbol Grounding Problem. Physica, D(42), 335–346.

Haruno, M., Wolpert, D. M., & Kawato, M. (2001). Mosaic model for sensori-
motor learning and control. Neural computation, 13(10), 2201–2220.

20

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

150

Haruno, M., Wolpert, D. M., & Kawato, M. (2003). Hierarchical MOSAIC for
movement generation. In International Congress Series 1250 (pp. 575– 590).:
Elsevier Science B.V.

Ho, Y. C. & Pepyne, D. L. (2002). Simple Explanation of the No-Free-Lunch
Theorem and its Implications. Journal of Optimization Theory and Applica-
tions, 115(3), 549–570.

Klir, G. J. & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Appli-
cations. Prentice Hall.

Matarić, M. J. (1997). Behavior-Based Control: Examples from Navigation,
Learning, and Group Behavior. Journal of Experimental and Theoretical Ar-
tificial Intelligence, 9(2-3), 323–336.

Matarić, M. J. & Marjanovic, M. J. (1993). Synthesizing Complex Behaviors
by Composing Simple Primitives. In Proceedings of the European Conference
on Artificial Life, volume 2 (pp. 698–707). Brussels, Belgium.

Microsoft (2011). Microsoft Robotic Developer Studio,
www.microsoft.com/robotics.

Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli,
M. (1988). Functional organization of inferior area 6 in the macaque monkey.
II. Area F5 and the control of distal movements. Experimental brain research.
Experimentelle Hirnforschung. Expérimentation cérébrale, 71(3), 491–507.

Rizzolatti, G. & Craighero, L. (2004). The Mirror-Neuron System. Annual
Review of Neuroscience, 27, 169–192.

Robosoft (2011). Kompai Robot, www.robosoft.com.

Rohrer, B. (2007). S-Learning: A Biomimetic Algorithm for Learning, Memory,
and Control in Robots. In Proceedings of the 3rd International IEEE/EMBS
Conference on Neural Engineering (pp. 148 – 151). Kohala Coast, Hawaii.

Rohrer, B., Bernard, M., Morrow, J. D., Rothganger, F., & Xavier, P. (2009).
Model-free Learning and Control in a Mobile Robot. In Proceedings of the
Fifth International Conference on Natural Computation (pp. 566–572). Tian-
jin, China.

Rohrer, B. & Hulet, S. (2006). BECCA - A Brain Emulating Cognition and
Control Architecture. Technical report, Cybernetic Systems Integration De-
partment, Sandria National Laboratories, Alberquerque, NM, USA.

Tani, J., Ito, M., & Sugita, Y. (2004). Self-Organization of Distributedly Rep-
resented Multiple Behavior Schemata in a Mirror System : Reviews of Robot
Experiments Using RNNPB. Neural Networks, 17, 1273–1289.

Wolpert, D. H. & Macready, W. G. (1997). No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

21

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

151

Ziemke, T., Jirenhed, D. A., & Hesslow, G. (2005). Internal simulation of
perception: a minimal neuro-robotic model. Neurocomputing, 68, 85–104.

22

Technical Teport - UMINF 11.15, Department of Computing Science, Umeå University, Sweden

152

